001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.ellipse.algebraic; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.basic.PntUtils; 013import imagingbook.common.math.Matrix; 014import imagingbook.common.math.eigen.GeneralizedSymmetricEigenDecomposition; 015import org.apache.commons.math3.linear.MatrixUtils; 016import org.apache.commons.math3.linear.RealMatrix; 017import org.apache.commons.math3.linear.RealVector; 018 019import static imagingbook.common.math.Arithmetic.sqr; 020 021/** 022 * <p> 023 * Algebraic ellipse fit based on Taubin's method [1]. Version 2 uses a reduced scatter and constraint matrix (5x5), the 024 * solution is found by generalized symmetric eigendecomposition. See [3, Sec. 11.2.1] for a detailed description (Alg. 025 * 11.8). This implementation performs data centering or, alternatively, accepts a specific reference point. 026 * </p> 027 * <p> 028 * [1] G. Taubin, G. Taubin. "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit 029 * equations with applications to edge and range image segmentation", IEEE Transactions on Pattern Analysis and Machine 030 * Intelligence 13(11), 1115–1138 (1991). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing – An 031 * Algorithmic Introduction</em>, 3rd ed, Springer (2022). 032 * </p> 033 * 034 * @author WB 035 * @version 2021/11/09 036 * @see EllipseFitTaubin1 037 */ 038public class EllipseFitTaubin2 implements EllipseFitAlgebraic { 039 040 private final double[] q; // = (A,B,C,D,E,F) ellipse parameters 041 042 public EllipseFitTaubin2(Pnt2d[] points, Pnt2d xref) { 043 if (points.length < 5) { 044 throw new IllegalArgumentException("at least 5 points must be supplied for ellipse fitting"); 045 } 046 this.q = fit(points, xref); 047 } 048 049 public EllipseFitTaubin2(Pnt2d[] points) { 050 this(points, PntUtils.centroid(points)); 051 } 052 053 @Override 054 public double[] getParameters() { 055 return this.q; 056 } 057 058 // -------------------------------------------------------------------------- 059 060 private double[] fit(Pnt2d[] points, Pnt2d xref) { 061 final int n = points.length; 062 063 // reference point 064 final double xr = xref.getX(); 065 final double yr = xref.getY(); 066 067 // design matrix (same as Fitzgibbon): 068 RealMatrix X = MatrixUtils.createRealMatrix(n, 6); 069 for (int i = 0; i < n; i++) { 070 final double x = points[i].getX() - xr; // center data set 071 final double y = points[i].getY() - yr; 072 double[] fi = {sqr(x), x*y, sqr(y), x, y, 1}; 073 X.setRow(i, fi); 074 } 075 076 // scatter matrix S (normalized by 1/n) 077 RealMatrix S = X.transpose().multiply(X).scalarMultiply(1.0/n); 078 RealMatrix S1 = S.getSubMatrix(0, 4, 0, 4); 079 RealVector s5 = S.getColumnVector(5).getSubVector(0, 5); 080 081 RealMatrix P = S1.subtract(s5.outerProduct(s5)); 082 083 double a = S.getEntry(0, 5); 084 double b = S.getEntry(2, 5); 085 double c = S.getEntry(1, 5); 086 double d = S.getEntry(3, 5); 087 double e = S.getEntry(4, 5); 088 089 // constraint matrix: 090 RealMatrix Q = Matrix.makeRealMatrix(5, 5, 091 4*a, 2*c, 0, 2*d, 0, 092 2*c, a+b, 2*c, e, d, 093 0, 2*c, 4*b, 0, 2*e, 094 2*d, e, 0, 1, 0, 095 0, d, 2*e, 0, 1); 096 097 GeneralizedSymmetricEigenDecomposition eigen = new GeneralizedSymmetricEigenDecomposition(P, Q); 098 099 double[] evals = eigen.getRealEigenvalues(); 100 101 int k = getSmallestPositiveIdx(evals); 102 RealVector q0 = eigen.getEigenvector(k); 103 104 double f = -s5.dotProduct(q0); 105 double[] qopt = q0.append(f).toArray(); 106 107 RealMatrix U = getDataOffsetCorrectionMatrix(xr, yr); 108 return U.operate(qopt); 109 } 110 111 // -------------------------------------------------------------------- 112 113 private int getSmallestPositiveIdx(double[] x) { 114 double minval = Double.POSITIVE_INFINITY; 115 int minidx = -1; 116 for (int i = 0; i < x.length; i++) { 117 if (x[i] >= 0 && x[i] < minval) { 118 minval = x[i]; 119 minidx = i; 120 } 121 } 122 return minidx; 123 } 124 125}