001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.ellipse.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import imagingbook.common.math.eigen.GeneralizedSymmetricEigenDecomposition;
015import org.apache.commons.math3.linear.MatrixUtils;
016import org.apache.commons.math3.linear.RealMatrix;
017import org.apache.commons.math3.linear.RealVector;
018
019import static imagingbook.common.math.Arithmetic.sqr;
020
021/**
022 * <p>
023 * Algebraic ellipse fit based on Taubin's method [1]. Version 2 uses a reduced scatter and constraint matrix (5x5), the
024 * solution is found by generalized symmetric eigendecomposition. See [3, Sec. 11.2.1] for a detailed description (Alg.
025 * 11.8). This implementation performs data centering or, alternatively, accepts a specific reference point.
026 * </p>
027 * <p>
028 * [1] G. Taubin, G. Taubin. "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit
029 * equations with applications to edge and range image segmentation", IEEE Transactions on Pattern Analysis and Machine
030 * Intelligence 13(11), 1115–1138 (1991). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An
031 * Algorithmic Introduction</em>, 3rd ed, Springer (2022).
032 * </p>
033 *
034 * @author WB
035 * @version 2021/11/09
036 * @see EllipseFitTaubin1
037 */
038public class EllipseFitTaubin2 implements EllipseFitAlgebraic {
039        
040        private final double[] q;       // = (A,B,C,D,E,F) ellipse parameters
041        
042        public EllipseFitTaubin2(Pnt2d[] points, Pnt2d xref) {
043                if (points.length < 5) {
044                        throw new IllegalArgumentException("at least 5 points must be supplied for ellipse fitting");
045                }
046                this.q = fit(points, xref);
047        }
048        
049        public EllipseFitTaubin2(Pnt2d[] points) {
050                this(points, PntUtils.centroid(points));
051        }
052
053        @Override
054        public double[] getParameters() {
055                return this.q;
056        }
057        
058        // --------------------------------------------------------------------------
059        
060        private double[] fit(Pnt2d[] points, Pnt2d xref) {
061                final int n = points.length;
062                
063                // reference point
064                final double xr = xref.getX();
065                final double yr = xref.getY();
066
067                // design matrix (same as Fitzgibbon):
068                RealMatrix X = MatrixUtils.createRealMatrix(n, 6);
069                for (int i = 0; i < n; i++) {
070                        final double x = points[i].getX() - xr; // center data set
071                        final double y = points[i].getY() - yr;
072                        double[] fi = {sqr(x), x*y, sqr(y), x, y, 1};
073                        X.setRow(i, fi);
074                }
075                
076                // scatter matrix S (normalized by 1/n)
077                RealMatrix S = X.transpose().multiply(X).scalarMultiply(1.0/n);
078                RealMatrix S1 = S.getSubMatrix(0, 4, 0, 4);
079                RealVector s5 = S.getColumnVector(5).getSubVector(0, 5);
080
081                RealMatrix P = S1.subtract(s5.outerProduct(s5));
082        
083                double a = S.getEntry(0, 5);
084                double b = S.getEntry(2, 5);
085                double c = S.getEntry(1, 5);
086                double d = S.getEntry(3, 5);
087                double e = S.getEntry(4, 5);
088                
089                // constraint matrix:
090                RealMatrix Q = Matrix.makeRealMatrix(5, 5, 
091                                4*a, 2*c, 0,   2*d, 0,
092                                2*c, a+b, 2*c, e,   d, 
093                                0,   2*c, 4*b, 0,   2*e,
094                                2*d, e,   0,   1,   0,
095                                0,   d,   2*e, 0,   1);
096                
097                GeneralizedSymmetricEigenDecomposition eigen = new GeneralizedSymmetricEigenDecomposition(P, Q);
098                
099                double[] evals = eigen.getRealEigenvalues();
100                
101                int k = getSmallestPositiveIdx(evals);                  
102                RealVector q0 = eigen.getEigenvector(k);
103                
104                double f = -s5.dotProduct(q0);
105                double[] qopt = q0.append(f).toArray();
106                
107                RealMatrix U = getDataOffsetCorrectionMatrix(xr, yr);
108                return U.operate(qopt);
109        }
110        
111        // --------------------------------------------------------------------
112        
113        private int getSmallestPositiveIdx(double[] x) {
114                double minval = Double.POSITIVE_INFINITY;
115                int minidx = -1;
116                for (int i = 0; i < x.length; i++) {
117                        if (x[i] >= 0 && x[i] < minval) {
118                                minval = x[i];
119                                minidx = i;
120                        }
121                }
122                return minidx;
123        }
124        
125}