001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.ellipse.algebraic;
010
011import ij.IJ;
012import imagingbook.common.geometry.basic.Pnt2d;
013import imagingbook.common.geometry.basic.PntUtils;
014import imagingbook.common.math.Matrix;
015import imagingbook.common.math.eigen.EigenDecompositionJama;
016import org.apache.commons.math3.linear.MatrixUtils;
017import org.apache.commons.math3.linear.RealMatrix;
018import org.apache.commons.math3.linear.RealVector;
019
020import java.util.Arrays;
021
022import static imagingbook.common.math.Arithmetic.sqr;
023
024/**
025 * <p>
026 * Algebraic ellipse fit based on Fitzgibbon's method [1], numerically improved as suggested by Halir and Flusser [2].
027 * See [3, Sec. 11.2.1] for a detailed description. Note: This implementation performs data centering or, alternatively,
028 * accepts a specific reference point. Capable of performing an (exact) 5-point fit!
029 * </p>
030 * <p>
031 * [1] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least- squares fitting of ellipses. IEEE Transactions on
032 * Pattern Analysis and Machine Intelligence 21(5), 476-480 (1999). <br> [2] R. Halíř and J. Flusser. Numerically stable
033 * direct least squares fitting of ellipses. In "Proceedings of the 6th International Conference in Central Europe on
034 * Computer Graphics and Visualization (WSCG’98)", pp. 125-132, Plzeň, CZ (February 1998). <br> [3] W. Burger, M.J.
035 * Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer (2022).
036 * </p>
037 *
038 * @author WB
039 * @version 2021/11/06
040 */
041public class EllipseFitFitzgibbonStable implements EllipseFitAlgebraic {
042        
043        private static final RealMatrix C1 = 
044                        Matrix.makeRealMatrix(3, 3,
045                                        0.0,  0.0, 2, 
046                                        0.0, -1.0, 0.0, 
047                                        2,    0.0, 0.0);
048        
049        private static final RealMatrix C1i = 
050                        Matrix.makeRealMatrix(3, 3,
051                                        0.0,  0.0, 0.5, 
052                                        0.0, -1.0, 0.0, 
053                                        0.5,  0.0, 0.0);
054        
055        private final double[] q;       // = (A,B,C,D,E,F) ellipse parameters
056        
057        public EllipseFitFitzgibbonStable(Pnt2d[] points, Pnt2d xref) {
058                this.q = fit(points, xref);
059        }
060        
061        public EllipseFitFitzgibbonStable(Pnt2d[] points) {
062                this(points, PntUtils.centroid(points));
063        }
064
065        @Override
066        public double[] getParameters() {
067                return this.q;
068        }
069        
070        private double[] fit(Pnt2d[] points, Pnt2d xref) {
071                final int n = points.length;
072                if (n < 5) {
073                        throw new IllegalArgumentException("fitter requires at least 5 sample points instead of " + points.length);
074                }
075
076                // reference point
077                final double xr = xref.getX();
078                final double yr = xref.getY();
079
080                RealMatrix X1 = MatrixUtils.createRealMatrix(n, 3);
081                RealMatrix X2 = MatrixUtils.createRealMatrix(n, 3);
082                
083                for (int i = 0; i < n; i++) {
084                        final double x = points[i].getX() - xr; // center data set
085                        final double y = points[i].getY() - yr;
086                        double[] f1 = {sqr(x), x*y, sqr(y)};
087                        double[] f2 = {x, y, 1};
088                        X1.setRow(i, f1);
089                        X2.setRow(i, f2);
090                }
091
092                // build reduced scatter matrices:
093                RealMatrix S1 = X1.transpose().multiply(X1);
094                RealMatrix S2 = X1.transpose().multiply(X2);
095                RealMatrix S3 = X2.transpose().multiply(X2);            
096                RealMatrix S3i = MatrixUtils.inverse(S3);
097                
098                RealMatrix T = S3i.scalarMultiply(-1).multiply(S2.transpose());         
099                RealMatrix Z = C1i.multiply(S1.add(S2.multiply(T)));
100                
101                // find the eigenvector of Z which satisfies the ellipse constraint:
102//              EigenDecomposition ed = new EigenDecomposition(Z);
103                EigenDecompositionJama ed = new EigenDecompositionJama(Z);
104                double[] p1 = null;
105                for (int i = 0; i < 3; i++) {
106                        RealVector e = ed.getEigenvector(i);
107                        if (e.dotProduct(C1.operate(e)) > 0) {
108                                p1 = e.toArray();
109                                break;
110                        }
111                }
112                
113                if (p1 == null) {
114                        IJ.log("p1 is null! " + Arrays.toString(points));
115                        return null;
116                }
117                
118                double[] p2 = T.operate(p1);
119                
120                RealMatrix U = getDataOffsetCorrectionMatrix(xr, yr);
121                
122                // assemble q
123                return U.operate(Matrix.join(p1, p2));
124        }
125        
126}