001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.ellipse.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.math.Matrix;
013import imagingbook.common.math.eigen.GeneralizedSymmetricEigenDecomposition;
014import org.apache.commons.math3.linear.MatrixUtils;
015import org.apache.commons.math3.linear.RealMatrix;
016
017import static imagingbook.common.math.Arithmetic.sqr;
018
019/**
020 * <p>
021 * Algebraic ellipse fit based on Fitzgibbon's original method [1], as described in [2] (WITHOUT the additional
022 * numerical improvements). Based on generalized symmetric eigenproblem solution. See [3, Sec. 11.2.1] for a detailed
023 * description. Note: This implementation does not use data centering nor accepts a specific reference point. With
024 * exactly 5 input points (generally sufficient for ellipse fitting) the scatter matrix X is singular and thus the
025 * Cholesky decomposition used by the {@link GeneralizedSymmetricEigenDecomposition} cannot be applied. Thus at least 6
026 * distinct input points are required (i.e., no duplicate points are allowed).
027 * </p>
028 * <p>
029 * [1] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least- squares fitting of ellipses. IEEE Transactions on
030 * Pattern Analysis and Machine Intelligence 21(5), 476-480 (1999). <br> [2] R. Halíř and J. Flusser. Numerically stable
031 * direct least squares fitting of ellipses. In "Proceedings of the 6th International Conference in Central Europe on
032 * Computer Graphics and Visualization (WSCG’98)", pp. 125-132, Plzeň, CZ (February 1998). <br> [3] W. Burger, M.J.
033 * Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer (2022).
034 * </p>
035 *
036 * @author WB
037 * @version 2022/11/17
038 */
039public class EllipseFitFitzgibbonOriginal implements EllipseFitAlgebraic {
040        
041        // constraint matrix
042        // constraint matrix
043        private static final RealMatrix C = Matrix.makeRealMatrix(6, 6,
044                                0, 0, 2, 0, 0, 0,
045                                0,-1, 0, 0, 0, 0,
046                                2, 0, 0, 0, 0, 0,
047                                0, 0, 0, 0, 0, 0,
048                                0, 0, 0, 0, 0, 0,
049                                0, 0, 0, 0, 0, 0 );
050
051        private final double[] q;       // = (A,B,C,D,E,F) algebraic ellipse parameters
052        
053        public EllipseFitFitzgibbonOriginal(Pnt2d[] points) {
054                if (points.length < 6) {
055                        throw new IllegalArgumentException("fitter requires at least 6 sample points instead of " + points.length);
056                }
057                this.q = fit(points);
058        }
059
060        @Override
061        public double[] getParameters() {
062                return this.q;
063        }
064        
065        private double[] fit(Pnt2d[] points) {
066                final int n = points.length;
067
068                // design matrix X:
069                RealMatrix X = MatrixUtils.createRealMatrix(n, 6);
070                
071                for (int i = 0; i < n; i++) {
072                        double x = points[i].getX();
073                        double y = points[i].getY();
074                        double[] ri = {sqr(x), x * y, sqr(y), x, y, 1};
075                        X.setRow(i, ri);
076                }
077                
078                // scatter matrix S:
079                RealMatrix S = X.transpose().multiply(X);
080
081                // solve C*p = lambda*S*p, 
082                // equiv. to A*x = lambda*B*x (with A, B symmetric, B positive definite):
083                GeneralizedSymmetricEigenDecomposition eigen = 
084                                new GeneralizedSymmetricEigenDecomposition(C, S, 1e-15, 1e-15); 
085                
086                if (eigen.hasComplexEigenvalues()) {
087                        throw new RuntimeException("encountered complex eigenvalues");
088                }
089                
090                double[] evals = eigen.getRealEigenvalues();    
091                int k = Matrix.idxMax(evals);                                   // index of the largest eigenvalue
092                return eigen.getEigenvector(k).toArray();               // associated eigenvector       
093        }
094        
095}