001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.ellipse.algebraic; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.math.Matrix; 013import imagingbook.common.math.eigen.EigenDecompositionJama; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016 017import static imagingbook.common.math.Arithmetic.sqr; 018 019/** 020 * <p> 021 * Algebraic ellipse fit using Fitzgibbon's original method [1], based on simple matrix inversion. See [2, Sec. 11.2.1] 022 * for a detailed description. Note: This implementation does not use data centering nor accepts a specific reference 023 * point. With exactly 5 input points (generally sufficient for ellipse fitting) the scatter matrix X is singular and in 024 * this case matrix S has no inverse. Thus at least 6 distinct input points are required (i.e., no duplicate points are 025 * allowed). 026 * </p> 027 * <p> 028 * [1] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least- squares fitting of ellipses. IEEE Transactions on 029 * Pattern Analysis and Machine Intelligence 21(5), 476-480 (1999).<br> [2] W. Burger, M.J. Burge, <em>Digital Image 030 * Processing – An Algorithmic Introduction</em>, 3rd ed, Springer (2022). 031 * </p> 032 * 033 * @author WB 034 * @version 2022/11/17 035 */ 036public class EllipseFitFitzgibbonNaive implements EllipseFitAlgebraic { 037 038 // constraint matrix 039 private static final RealMatrix C = Matrix.makeRealMatrix(6, 6, 040 0, 0, 2, 0, 0, 0, 041 0,-1, 0, 0, 0, 0, 042 2, 0, 0, 0, 0, 0, 043 0, 0, 0, 0, 0, 0, 044 0, 0, 0, 0, 0, 0, 045 0, 0, 0, 0, 0, 0 ); 046 047 private final double[] q; // = (A,B,C,D,E,F) ellipse parameters 048 049 public EllipseFitFitzgibbonNaive(Pnt2d[] points) { 050 if (points.length < 6) { 051 throw new IllegalArgumentException("fitter requires at least 6 sample points instead of " + points.length); 052 } 053 this.q = fit(points); 054 } 055 056 @Override 057 public double[] getParameters() { 058 return this.q; 059 } 060 061 private double[] fit(Pnt2d[] points) { 062 final int n = points.length; 063 064 // create design matrix X: 065 RealMatrix X = MatrixUtils.createRealMatrix(n, 6); 066 for (int i = 0; i < n; i++) { 067 double x = points[i].getX(); 068 double y = points[i].getY(); 069 X.setEntry(i, 0, sqr(x)); 070 X.setEntry(i, 1, x * y); 071 X.setEntry(i, 2, sqr(y)); 072 X.setEntry(i, 3, x); 073 X.setEntry(i, 4, y); 074 X.setEntry(i, 5, 1); 075 } 076 077 // scatter matrix S: 078 RealMatrix S = X.transpose().multiply(X); 079 RealMatrix Si = MatrixUtils.inverse(S, 1e-15); 080 081// EigenDecomposition ed = new EigenDecomposition(Si.multiply(C)); 082 EigenDecompositionJama ed = new EigenDecompositionJama(Si.multiply(C)); 083 084 double[] evals = ed.getRealEigenvalues(); 085 int k = Matrix.idxMax(evals); // index of the largest eigenvalue 086 return ed.getEigenvector(k).toArray(); 087 } 088 089}