001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.geometric;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.circle.GeometricCircle;
013import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
014import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
015import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
016import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
017import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
018import org.apache.commons.math3.fitting.leastsquares.MultivariateJacobianFunction;
019import org.apache.commons.math3.linear.Array2DRowRealMatrix;
020import org.apache.commons.math3.linear.ArrayRealVector;
021import org.apache.commons.math3.linear.RealMatrix;
022import org.apache.commons.math3.linear.RealVector;
023import org.apache.commons.math3.optim.SimpleVectorValueChecker;
024import org.apache.commons.math3.util.Pair;
025
026import java.util.LinkedList;
027import java.util.List;
028
029import static imagingbook.common.math.Arithmetic.isZero;
030import static java.lang.Math.hypot;
031import static org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory.evaluationChecker;
032
033/**
034 * <p>
035 * "Distance-based" geometric circle fitter using a nonlinear least-squares (Levenberg-Marquart) optimizer. See [1, Sec.
036 * 11.1.3] for a detailed description (Alg. 11.3).
037 * </p>
038 * <p>
039 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
040 * (2022).
041 * </p>
042 *
043 * @author WB
044 * @version 2022/11/17
045 */
046public class CircleFitGeometricDist implements CircleFitGeometric {
047        
048        public static final int DefaultMaxIterations = 1000;
049        public static final double DefaultTolerance = 1e-6;
050        
051        private final Pnt2d[] pts;
052        private final double[] V;
053        private final double[][] J;
054        private final Optimum solution;
055        private final List<double[]> history = new LinkedList<>();
056        
057        public CircleFitGeometricDist(Pnt2d[] pts, GeometricCircle initCircle) {
058                this(pts, initCircle, DefaultMaxIterations, DefaultMaxIterations, DefaultTolerance);
059        }
060        
061        public CircleFitGeometricDist(Pnt2d[] pts, GeometricCircle initCircle, int maxEvaluations, int maxIterations, double tolerance) {
062                this.pts = pts;
063                this.V = new double[pts.length];
064                this.J = new double[pts.length][3];
065                
066                LeastSquaresProblem problem = 
067                                LeastSquaresFactory.create(
068                                        new AnalyticModel(), // model(V, J), 
069                                        new ArrayRealVector(pts.length),                // zero vector
070                                        new ArrayRealVector(initCircle.getParameters()),
071                                        evaluationChecker(new SimpleVectorValueChecker(tolerance, tolerance)),
072                                        maxEvaluations, maxIterations);
073                
074                LeastSquaresOptimizer optimizer = new LevenbergMarquardtOptimizer();    // new GaussNewtonOptimizer();  
075                this.solution = optimizer.optimize(problem);
076        }
077        
078
079        // --------------------------------------------------------------------------
080
081        @Override
082        public double[] getParameters() {
083                return solution.getPoint().toArray();
084        }
085        
086        @Override
087        public int getIterations() {
088                return solution.getIterations();
089        }
090        
091        @Override
092        public List<double[]> getHistory() {
093                return history;
094        }
095        
096        // --------------------------------------------------------------------------
097
098        /**
099         * Defines function {@link #value(RealVector)} which returns the vector of model values and the associated Jacobian
100         * matrix for a given parameter point.
101         */
102    class AnalyticModel implements MultivariateJacobianFunction {
103
104                @Override
105                public Pair<RealVector, RealMatrix> value(RealVector point) {
106                        final double[] p = point.toArray();
107                        if (RecordHistory) {
108                                history.add(p.clone());
109                        }
110                        
111                        final double xc = p[0], yc = p[1], r  = p[2];
112                        for (int i = 0; i < pts.length; i++) {
113                                double dx = xc - pts[i].getX();
114                                double dy = yc - pts[i].getY();
115                                double ri = hypot(dx, dy);
116                                
117                                // values:
118                                V[i] = ri - r;
119                                
120                                // Jacobian:
121                                if (isZero(ri)) {       // (xi,yi) is at the circle center
122                                        J[i][0] = 0;    // (xc - xi) = 0 too
123                                        J[i][1] = 0;    // (yc - yi) = 0 too
124                                } else {
125                                        J[i][0] = dx / ri;
126                                        J[i][1] = dy / ri;
127                                }
128                                J[i][2] = -1;
129                        }
130                        RealVector VV = new ArrayRealVector(V, false);
131                        RealMatrix JJ = new Array2DRowRealMatrix(J, false);
132                        return new Pair<>(VV, JJ);
133                }
134        
135    }
136    
137    
138    
139    // -------------------------------------------------------------------
140    
141//    public static void main(String[] args) {
142//      PrintPrecision.set(9);
143//      //Pnt2d[] points = CircleMaker.makeTestCircle(XC, YC, R, 100, Angle0, Angle1, SigmaNoise);
144//      //Pnt2d[] points = CircleMaker.makeTestCircle(XC, YC, R, 4, Angle0, Angle1, 0.1);
145//      //Pnt2d[] points = CircleMaker.makeTestGander(30);
146//      //Pnt2d[] points = CircleSampler.make3Points(30);
147//      
148//      Pnt2d[] points = {
149//                              Pnt2d.from(15,9),
150//                              Pnt2d.from(68,33),
151//                              Pnt2d.from(35,69),
152//                              Pnt2d.from(17,51),
153//                              Pnt2d.from(90,54)
154//              };
155//              
156////            Circle2D real = new Circle2D(XC, YC, R);
157////            IJ.log(" real: " + real.toString());
158//      
159////            Pnt2d[] points = makeTestPoints();
160//              
161//              GeometricCircle estimA = new CircleFitPratt(points).getGeometricCircle();
162//              IJ.log("estimA: " + estimA.toString());
163//              IJ.log("estimA error = " + estimA.getMeanSquareError(points));
164//              
165//              //Circle2D init = new Circle2D(XC, YC, R);
166//              //Circle2D init = estimA;
167//              GeometricCircle init = disturbCircle(estimA, -1.5, 0.5, 10);
168//              IJ.log(" init: " + init.toString());
169//              IJ.log(" init error = " + init.getMeanSquareError(points));
170//              
171//              CircleFitGeometricDist geomfitter = new CircleFitGeometricDist(points, init);
172//              GeometricCircle refined = geomfitter.getCircle();
173//              
174//              //Circle2D refined = Doube.levenMarqFull(points, init);
175//              
176//              IJ.log("refin: " + refined.toString());
177//              IJ.log("iterations: " + geomfitter.getIterations());
178//              
179//              IJ.log("final error = " + refined.getMeanSquareError(points));
180//    }
181//
182//    private static GeometricCircle disturbCircle (GeometricCircle circle, double dxc, double dyc, double dr) {
183//              return new GeometricCircle(circle.getXc() + dxc, circle.getYc() + dyc, circle.getR() + dr);
184//      }
185}