001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import org.apache.commons.math3.linear.MatrixUtils;
015import org.apache.commons.math3.linear.RealMatrix;
016import org.apache.commons.math3.linear.SingularValueDecomposition;
017
018import static imagingbook.common.math.Arithmetic.sqr;
019
020/**
021 * This is an implementation of the algebraic circle fitting algorithm by Taubin [1], following the description in [2]
022 * (Sec. 5.9-5.10).
023 * <p>
024 * The algorithm uses singular-value decomposition (SVD). Fits to exactly 3 (non-collinear) points are handled properly.
025 * Data centering is used to improve numerical stability (alternatively, a reference point can be specified).
026 * </p>
027 * <p>
028 * [1] G. Taubin. "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with
029 * applications to edge and range image segmentation". <em>IEEE Transactions on Pattern Analysis and Machine
030 * Intelligence</em> <strong>13</strong>(11), 1115–1138 (1991).
031 * <br>
032 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on
033 * Statistics and Applied Probability. Taylor &amp; Francis (2011).
034 * </p>
035 *
036 * @author WB
037 */
038public class CircleFitTaubin implements CircleFitAlgebraic {
039        
040        private final double[] q;       // p = (A,B,C,D) circle parameters
041
042        /**
043         * Constructor. The centroid of the sample points is used as the reference point.
044         *
045         * @param points sample points
046         */
047        public CircleFitTaubin(Pnt2d[] points) {
048                this(points, null);
049        }
050
051        /**
052         * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null}
053         * is passed for {@code xref}.
054         *
055         * @param points sample points
056         * @param xref reference point or {@code null}
057         */
058        public CircleFitTaubin(Pnt2d[] points, Pnt2d xref) {
059                this.q = fit(points, xref);
060        }
061        
062        private double[] fit(Pnt2d[] pts, Pnt2d xref) {
063                int n = pts.length;
064                if (n < 3)
065                        throw new IllegalArgumentException("at least 3 points are required");
066
067                if (xref == null) {
068                        xref = PntUtils.centroid(pts);
069                }
070                double xr = xref.getX();
071                double yr = xref.getY();
072
073                double[][] Xa = new double[n][3];       // Xa[i] = (z, x, y)
074                double zs = 0;
075                for (int i = 0; i < n; i++) {
076                        double x = pts[i].getX() - xr;  // = x_i
077                        double y = pts[i].getY() - yr;  // = y_i
078                        double z = sqr(x) + sqr(y);             // = z_i
079                        zs = zs + z;
080                        Xa[i][0] = z;
081                        Xa[i][1] = x;
082                        Xa[i][2] = y;
083                }
084                
085                double zm = zs / n;
086                double zmr = Math.sqrt(zm);
087                
088                // normalize z to zero mean, unit variance:
089                for (int i = 0; i < n; i++) {
090                        Xa[i][0] = (Xa[i][0] - zm) / (2 * zmr);
091                }
092                
093                RealMatrix X = MatrixUtils.createRealMatrix(Xa);
094                SingularValueDecomposition svd = new SingularValueDecomposition(X);
095                RealMatrix V = svd.getV();
096                
097                // get the column vector of V associated with the smallest singular value:
098                double[] svals = svd.getSingularValues();
099                int minIdx = Matrix.idxMin(svals);
100                double[] a = V.getColumn(minIdx);
101
102                double[] qq = new double[4];
103                qq[0] =  a[0] / (2 * zmr);
104                qq[1] =  a[1];
105                qq[2] =  a[2];
106                qq[3] = -a[0] * zmr / 2;
107                                
108                // re-adjust for data centering:
109                RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr);
110                return M.operate(qq);           // q = (A,B,C,D)
111        }
112        
113        @Override
114        public double[] getParameters() {
115                return this.q;
116        }
117
118}