001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import imagingbook.common.math.eigen.EigenDecompositionJama;
015import imagingbook.common.util.PrimitiveSortMap;
016import org.apache.commons.math3.linear.MatrixUtils;
017import org.apache.commons.math3.linear.RealMatrix;
018import org.apache.commons.math3.linear.RealVector;
019import org.apache.commons.math3.linear.SingularValueDecomposition;
020
021import static imagingbook.common.math.Arithmetic.sqr;
022
023
024/**
025 * This is an implementation of the algebraic circle fitting algorithm by Pratt [1], as described in [2] (Sec. 5.5-5.6).
026 * The algorithm uses singular-value decomposition (SVD) and eigen-decomposition. See [3, Alg. 11.2] for additional
027 * details.
028 * <p>
029 * Fits to exactly 3 (non-collinear) points are handled properly. Data centering is used to improve numerical stability
030 * (alternatively, a reference point can be specified).
031 * </p>
032 * <p>
033 * [1] V. Pratt. "Direct least-squares fitting of algebraic surfaces". <em>ACM SIGGRAPH Computer Graphics</em>
034 * <strong>21</strong>(4), 145–152 (July 1987).
035 * <br>
036 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on
037 * Statistics and Applied Probability. Taylor &amp; Francis (2011).
038 * <br>
039 * [3] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
040 * (2022).
041 * </p>
042 *
043 * @author WB
044 */
045public class CircleFitPratt implements CircleFitAlgebraic {
046        
047        private static final RealMatrix Ci =    // inverse of constraint matrix C
048                        MatrixUtils.createRealMatrix(new double[][] { 
049                                {  0,   0, 0, -0.5 },
050                                {  0,   1, 0,  0 },
051                                {  0,   0, 1,  0 },
052                                { -0.5, 0, 0,  0 }});
053        
054        private final double[] q;       // q = (A,B,C,D) circle parameters
055        
056        @Override
057        public double[] getParameters() {
058                return this.q;
059        }
060
061        /**
062         * Constructor. The centroid of the sample points is used as the reference point.
063         *
064         * @param points sample points
065         */
066        public CircleFitPratt(Pnt2d[] points) {
067                this(points, null);
068        }
069
070        /**
071         * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null}
072         * is passed for {@code xref}.
073         *
074         * @param points sample points
075         * @param xref reference point or {@code null}
076         */
077        public CircleFitPratt(Pnt2d[] points, Pnt2d xref) {
078                this.q = fit(points, xref);
079        }
080
081        private double[] fit(Pnt2d[] pts, Pnt2d xref) {
082                final int n = pts.length;
083                if (n < 3) {
084                        throw new IllegalArgumentException("at least 3 points are required");
085                }
086                
087                if (xref == null) {
088                        xref = PntUtils.centroid(pts);
089                }
090                final double xr = xref.getX();
091                final double yr = xref.getY();
092
093                double[][] Xa = new double[Math.max(n, 4)][4];  // Xa must have at least 4 rows!
094                for (int i = 0; i < pts.length; i++) {
095                        double x = pts[i].getX() - xr;          // = x_i
096                        double y = pts[i].getY() - yr;          // = y_i
097                        Xa[i][0] = sqr(x) + sqr(y);                     // = z_i
098                        Xa[i][1] = x;
099                        Xa[i][2] = y;
100                        Xa[i][3] = 1;
101                }
102                // if nPoints = 3 (special case) the last row of the
103                // 4x4 matrix contains all zeros (make X singular)!
104
105                RealMatrix X = MatrixUtils.createRealMatrix(Xa);
106
107                SingularValueDecomposition svd = new SingularValueDecomposition(X);
108                RealMatrix S = svd.getS();      
109                RealMatrix V = svd.getV();
110                double[] svals = svd.getSingularValues();       // note: singular values are all positive (>= 0)
111                
112                int k = Matrix.idxMin(svals);
113                double smin = svals[k];
114                double smax = Matrix.max(svals); 
115                
116                RealVector qq = null;           // = \dot{q} solution vector (algebraic circle parameters)
117
118                double icond = smin / smax;
119                if (icond < 1e-12) {                    // smin/smax = inverse condition number of X, 1e-12
120                        // singular case (X is rank deficient)
121                        qq = V.getColumnVector(k);
122                } else {
123                        // regular (non-singular) case
124                
125                        // Version1 (seems to create smaller roundoff errors, better matrix symmetry):
126                        RealMatrix Y = V.multiply(S).multiply(V.transpose());
127                        RealMatrix Z = Y.multiply(Ci).multiply(Y); // = Y * Ci * Y
128                        
129                        // Version2:
130//                      RealMatrix Y = V.multiply(S);
131//                      RealMatrix Z = Y.transpose().multiply(Ci).multiply(Y); // = Y^T * Ci * Y
132                        
133                        EigenDecompositionJama ed = new EigenDecompositionJama(Z); 
134                        double[] evals = ed.getRealEigenvalues();
135                        int l = new PrimitiveSortMap(evals).getIndex(1);        // index of the 2nd-smallest eigenvalue
136                        RealVector el = ed.getEigenvector(l);
137                        
138                        // Version1 ---------------------------------------------------
139//                      qq = Matrix.solve(S.multiply(svd.getVT()), el);         // solve S * V^T * p = el
140                        
141                        // Version2 ---------------------------------------------------
142                        qq = V.operate(MatrixUtils.inverse(S).operate(el));     // simpler since S is diagonal (i.e., easy to invert)
143                }
144
145                RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr);
146                return M.operate(qq).toArray();  // q = (A,B,C,D)
147        }
148                
149}