001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import org.apache.commons.math3.linear.MatrixUtils;
014import org.apache.commons.math3.linear.RealMatrix;
015import org.apache.commons.math3.linear.SingularMatrixException;
016import org.apache.commons.math3.linear.SingularValueDecomposition;
017
018import static imagingbook.common.math.Arithmetic.sqr;
019
020/**
021 * This is an improved implementation of the Kåsa [1] circle fitting algorithm described in [2, Sec. 5.2] (Eq. 5.12). It
022 * is based on the Moore-Penrose pseudo-inverse which is applied to the full data matrix (i.e, no 3x3 scatter matrix is
023 * mounted). See also [3, Sec. 11.1.2] and {@link CircleFitKasaA} for the original version.
024 * <p>
025 * This algorithm is assumed to be numerically more stable than solutions based on solving a 3x3 system. The
026 * pseudo-inverse is obtained by singular-value decomposition (SVD). However, the significant bias on points sampled
027 * from a small circle segment remains. Fits to exactly 3 (non-collinear) points are handled properly. No data centering
028 * (which should improve numerical stability) is used.
029 * </p>
030 * <p>
031 * [1] I. Kåsa. "A circle fitting procedure and its error analysis", <em>IEEE Transactions on Instrumentation and
032 * Measurement</em> <strong>25</strong>(1), 8–14 (1976).
033 * <br>
034 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on
035 * Statistics and Applied Probability. Taylor &amp; Francis (2011).
036 * <br>
037 * [3] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
038 * (2022).
039 * </p>
040 *
041 * @author WB
042 */
043public class CircleFitKasaC implements CircleFitAlgebraic {
044
045        private final double[] q;       // q = (B,C,D) circle parameters, A=1
046
047        /**
048         * Constructor. The centroid of the sample points is used as the reference point.
049         *
050         * @param points sample points
051         */
052        public CircleFitKasaC(Pnt2d[] points) {
053                this(points, null);
054        }
055
056        /**
057         * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null}
058         * is passed for {@code xref}.
059         *
060         * @param points sample points
061         * @param xref reference point or {@code null}
062         */
063        public CircleFitKasaC(Pnt2d[] points, Pnt2d xref) {
064                this.q = fit(points, xref);
065        }
066        
067        @Override
068        public double[] getParameters() {
069                return q;
070        }
071        
072        private double[] fit(Pnt2d[] pts, Pnt2d xref) {
073                final int n = pts.length;
074                if (n < 3) {
075                        throw new IllegalArgumentException("at least 3 points are required");
076                }
077                
078                if (xref == null) {
079                        xref = PntUtils.centroid(pts);
080                }
081                final double xr = xref.getX();
082                final double yr = xref.getY();
083
084                
085                final double[] z = new double[n];
086                final double[][] Xa = new double[n][];
087                for (int i = 0; i < n; i++) {
088                        final double x = pts[i].getX() - xr;
089                        final double y = pts[i].getY() - yr;
090                        Xa[i] = new double[] {x, y, 1};
091                        z[i] = -(sqr(x) + sqr(y));
092                }
093
094                RealMatrix X = MatrixUtils.createRealMatrix(Xa);
095                
096                RealMatrix Xi = null;
097                try {
098                        SingularValueDecomposition svd = new SingularValueDecomposition(X);
099                        Xi = svd.getSolver().getInverse();              // get (3,N) pseudoinverse of X
100                } catch (SingularMatrixException e) { }
101                
102                if (Xi == null) {
103                        return null;
104                }
105                else {
106                        double[] qq = Xi.operate(z);    // solution vector qq = X^-1 * z = (B, C, D)    
107                        // re-adjust for data centering
108                        RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr);         
109                        return M.operate(new double[] {1, qq[0], qq[1], qq[2]});        // q = (A,B,C,D)
110                }
111        }
112
113}