001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.circle.algebraic; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.basic.PntUtils; 013import imagingbook.common.math.Matrix; 014import org.apache.commons.math3.linear.RealMatrix; 015 016import static imagingbook.common.math.Arithmetic.sqr; 017 018/** 019 * This is an implementation of the modified Kåsa [1] circle fitting algorithm described in [2, Sec. 5.1]. A description 020 * of the concrete algorithm can be found in [3, Alg. 11.1]. See {@link CircleFitKasaA} for the original version. 021 * <p> 022 * Compared to the original Kåsa algorithm, this variant also solves a 3x3 linear system but uses a slightly different 023 * setup of the scatter matrix (using only powers of 2 instead of 3). A numerical solver is used for this purpose. The 024 * algorithm is fast but shares the same numerical instabilities and bias when sample points are taken from a small 025 * circle segment. It fails when matrix M becomes singular. Fits to exactly 3 (non-collinear) points are handled 026 * properly. Data centering is used to improve numerical stability (alternatively, a reference point can be specified). 027 * </p> 028 * <p> 029 * [1] I. Kåsa. "A circle fitting procedure and its error analysis", 030 * <em>IEEE Transactions on Instrumentation and Measurement</em> <strong>25</strong>(1), 031 * 8–14 (1976). 032 * <br> 033 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on 034 * Statistics and Applied Probability. Taylor & Francis (2011). 035 * <br> 036 * [3] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 037 * (2022). 038 * </p> 039 * 040 * @author WB 041 * @see CircleFitKasaA 042 * @see CircleFitKasaC 043 */ 044public class CircleFitKasaB implements CircleFitAlgebraic { 045 046 private final double[] q; // q = (B,C,D) circle parameters, A=1 047 048 /** 049 * Constructor. The centroid of the sample points is used as the reference point. 050 * 051 * @param points sample points 052 */ 053 public CircleFitKasaB(Pnt2d[] points) { 054 this(points, null); 055 } 056 057 /** 058 * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null} 059 * is passed for {@code xref}. 060 * 061 * @param points sample points 062 * @param xref reference point or {@code null} 063 */ 064 public CircleFitKasaB(Pnt2d[] points, Pnt2d xref) { 065 this.q = fit(points, xref); 066 } 067 068 069 @Override 070 public double[] getParameters() { 071 return q; 072 } 073 074 private double[] fit(Pnt2d[] pts, Pnt2d xref) { 075 final int n = pts.length; 076 if (n < 3) { 077 throw new IllegalArgumentException("at least 3 points are required"); 078 } 079 080 if (xref == null) { 081 xref = PntUtils.centroid(pts); 082 } 083 final double xr = xref.getX(); 084 final double yr = xref.getY(); 085 086 // calculate elements of scatter matrix 087 double sx = 0, sy = 0, sz = 0; 088 double sxy = 0, sxx = 0, syy = 0, sxz = 0, syz = 0; 089 for (int i = 0; i < n; i++) { 090 final double x = pts[i].getX() - xr; 091 final double y = pts[i].getY() - yr; 092 final double x2 = sqr(x); 093 final double y2 = sqr(y); 094 final double z = x2 + y2; 095 sx += x; 096 sy += y; 097 sz += z; 098 sxx += x2; 099 syy += y2; 100 sxy += x * y; 101 sxz += x * z; 102 syz += y * z; 103 } 104 105 double[][] X = { // scatter matrix X 106 {sxx, sxy, sx}, 107 {sxy, syy, sy}, 108 { sx, sy, n}}; 109 110 double[] b = {-sxz, -syz, -sz}; // RHS vector 111 double[] qq = Matrix.solve(X, b); // solve M * qq = b (exact), for parameter vector qq = (B, C, D) 112 if (qq == null) { 113 return null; // M is singular, no solution 114 } 115 else { 116 // re-adjust for data centering 117 RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr); 118 return M.operate(new double[] {1, qq[0], qq[1], qq[2]}); // q = (A,B,C,D) 119 } 120 } 121 122}