001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.circle.algebraic; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.basic.PntUtils; 013import imagingbook.common.math.Matrix; 014import org.apache.commons.math3.linear.RealMatrix; 015 016import static imagingbook.common.math.Arithmetic.sqr; 017 018/** 019 * <p> 020 * This is an implementation of the algebraic circle fitting algorithm described in [1]. This algorithm is among the 021 * oldest and simplest algebraic circle fitting methods. This implementation closely follows the original paper. The 022 * only difference is the use of a numerical solver (as compared to using the inverse of matrix M) for solving the 3x3 023 * linear system. 024 * </p> 025 * <p> 026 * Its performance is sufficient if points are sampled over a large part of the circle. It shows significant bias 027 * (estimated circles are too small) when sample points are confined to a small segment of the circle. It fails when 028 * matrix M becomes singular. Fits to exactly 3 (non-collinear) points are handled properly. Data centering is used to 029 * improve numerical stability (alternatively, a reference point can be specified). 030 * </p> 031 * <p> 032 * [1] I. Kåsa. "A circle fitting procedure and its error analysis", 033 * <em>IEEE Transactions on Instrumentation and Measurement</em> <strong>25</strong>(1), 034 * 8–14 (1976). 035 * </p> 036 * 037 * @author WB 038 */ 039public class CircleFitKasaA implements CircleFitAlgebraic { 040 041 private final double[] q; // q = (A,B,C,D) algebraic circle parameters 042 043 /** 044 * Constructor. The centroid of the sample points is used as the reference point. 045 * 046 * @param points sample points 047 */ 048 public CircleFitKasaA(Pnt2d[] points) { 049 this(points, null); 050 } 051 052 /** 053 * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null} 054 * is passed for {@code xref}. 055 * 056 * @param points sample points 057 * @param xref reference point or {@code null} 058 */ 059 public CircleFitKasaA(Pnt2d[] points, Pnt2d xref) { 060 this.q = fit(points, xref); 061 } 062 063 @Override 064 public double[] getParameters() { 065 return q; 066 } 067 068 private double[] fit(Pnt2d[] pts, Pnt2d xref) { 069 final int n = pts.length; 070 if (n < 3) { 071 throw new IllegalArgumentException("at least 3 points are required"); 072 } 073 074 if (xref == null) { 075 xref = PntUtils.centroid(pts); 076 } 077 final double xr = xref.getX(); 078 final double yr = xref.getY(); 079 080 // calculate sums: 081 double sx = 0, sy = 0; 082 double sxy = 0, sxx = 0, syy = 0; 083 double sxxx = 0, syyy = 0; 084 for (int i = 0; i < n; i++) { 085 final double x = pts[i].getX() - xr; 086 final double y = pts[i].getY() - yr; 087 final double x2 = sqr(x); 088 final double y2 = sqr(y); 089 sx += x; 090 sy += y; 091 sxx += x2; 092 syy += y2; 093 sxy += x * y; 094 sxxx += x2 * x + y2 * x; // = x^3 + x * y^2 095 syyy += y2 * y + x2 * y; // = y^3 + x^2 * y 096 } 097 098 double sz = sxx + syy; 099 100 double[][] X = { // = D in the paper 101 { 2 * sx, 2 * sy, n}, 102 { 2 * sxx, 2 * sxy, sx}, 103 { 2 * sxy, 2 * syy, sy}}; 104 105 double[] b = {sz, sxxx, syyy}; // RHS vector (= E in the paper) 106 107 // find exact solution to 3x3 system M * q = b (using a numerical solver): 108 double[] qq = Matrix.solve(X, b); // = Q in the paper, qq = (B,C,D) 109 110 double B = -2 * qq[0]; 111 double C = -2 * qq[1]; 112 double D = -qq[2]; 113 114 // re-adjust for data centering 115 RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr); 116 return M.operate(new double[] {1, B, C, D}); // q = (A,B,C,D) 117 } 118 119}