001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import org.apache.commons.math3.linear.RealMatrix;
015
016import static imagingbook.common.math.Arithmetic.sqr;
017
018/**
019 * <p>
020 * This is an implementation of the algebraic circle fitting algorithm described in [1]. This algorithm is among the
021 * oldest and simplest algebraic circle fitting methods. This implementation closely follows the original paper. The
022 * only difference is the use of a numerical solver (as compared to using the inverse of matrix M) for solving the 3x3
023 * linear system.
024 * </p>
025 * <p>
026 * Its performance is sufficient if points are sampled over a large part of the circle. It shows significant bias
027 * (estimated circles are too small) when sample points are confined to a small segment of the circle. It fails when
028 * matrix M becomes singular. Fits to exactly 3 (non-collinear) points are handled properly. Data centering is used to
029 * improve numerical stability (alternatively, a reference point can be specified).
030 * </p>
031 * <p>
032 * [1] I. Kåsa. "A circle fitting procedure and its error analysis",
033 * <em>IEEE Transactions on Instrumentation and Measurement</em> <strong>25</strong>(1),
034 * 8–14 (1976).
035 * </p>
036 *
037 * @author WB
038 */
039public class CircleFitKasaA implements CircleFitAlgebraic {
040
041        private final double[] q;       // q = (A,B,C,D) algebraic circle parameters
042
043        /**
044         * Constructor. The centroid of the sample points is used as the reference point.
045         *
046         * @param points sample points
047         */
048        public CircleFitKasaA(Pnt2d[] points) {
049                this(points, null);
050        }
051
052        /**
053         * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null}
054         * is passed for {@code xref}.
055         *
056         * @param points sample points
057         * @param xref reference point or {@code null}
058         */
059        public CircleFitKasaA(Pnt2d[] points, Pnt2d xref) {
060                this.q = fit(points, xref);
061        }
062        
063        @Override
064        public double[] getParameters() {
065                return q;
066        }
067        
068        private double[] fit(Pnt2d[] pts, Pnt2d xref) {
069                final int n = pts.length;
070                if (n < 3) {
071                        throw new IllegalArgumentException("at least 3 points are required");
072                }
073                
074                if (xref == null) {
075                        xref = PntUtils.centroid(pts);
076                }
077                final double xr = xref.getX();
078                final double yr = xref.getY();
079
080                // calculate sums:
081                double sx = 0, sy = 0;
082                double sxy = 0, sxx = 0, syy = 0;
083                double sxxx = 0, syyy = 0;
084                for (int i = 0; i < n; i++) {
085                        final double x = pts[i].getX() - xr;
086                        final double y = pts[i].getY() - yr;
087                        final double x2 = sqr(x);
088                        final double y2 = sqr(y);
089                        sx   += x;
090                        sy   += y;
091                        sxx  += x2;
092                        syy  += y2;
093                        sxy  += x * y;
094                        sxxx += x2 * x + y2 * x;        // = x^3 + x * y^2
095                        syyy += y2 * y + x2 * y;        // = y^3 + x^2 * y
096                }
097                
098                double sz = sxx + syy;
099                
100                double[][] X = {                                // = D in the paper
101                                { 2 * sx,  2 * sy,  n},
102                                { 2 * sxx, 2 * sxy, sx},
103                                { 2 * sxy, 2 * syy, sy}};
104            
105                double[] b = {sz, sxxx, syyy};   // RHS vector (= E in the paper)
106                
107                // find exact solution to 3x3 system M * q = b (using a numerical solver):
108                double[] qq = Matrix.solve(X, b); // = Q in the paper, qq = (B,C,D)
109                
110                double B = -2 * qq[0];
111                double C = -2 * qq[1];
112                double D = -qq[2];
113                
114                // re-adjust for data centering
115                RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr);
116                return M.operate(new double[] {1, B, C, D});    // q = (A,B,C,D)
117        }
118
119}