001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.circle.algebraic; 010 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.basic.PntUtils; 014import imagingbook.common.math.Matrix; 015import imagingbook.common.math.eigen.EigenDecompositionJama; 016import imagingbook.common.util.PrimitiveSortMap; 017import org.apache.commons.math3.linear.MatrixUtils; 018import org.apache.commons.math3.linear.RealMatrix; 019import org.apache.commons.math3.linear.RealVector; 020import org.apache.commons.math3.linear.SingularValueDecomposition; 021 022import static imagingbook.common.math.Arithmetic.sqr; 023 024/** 025 * <p> 026 * This is an implementation of the "hyperaccurate" algebraic circle fit proposed by Al-Sharadqah and Chernov in [1], 027 * also described in [2] (Sec. 7.5, Eq. 744). This method combines the Pratt and Taubin fits to eliminate the essential 028 * bias. This version is "optimized for stability, not for speed" (see https://people.cas.uab.edu/~mosya/cl/HyperSVD.m). 029 * Singular-value decomposition is used for testing singularity of the data matrix and finding a solution in the 030 * singular case. Fits to exactly 3 (non-collinear) points are handled properly. Data centering is used to improve 031 * numerical stability (alternatively, a reference point can be specified). 032 * </p> 033 * <p> 034 * [1] A. Al-Sharadqah and N. Chernov. "Error analysis for circle fitting algorithms". 035 * <em>Electronic Journal of Statistics</em>, 3:886–911 (2009). 036 * <br> 037 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on 038 * Statistics and Applied Probability. Taylor & Francis (2011). 039 * </p> 040 * 041 * @author WB 042 */ 043public class CircleFitHyperStable implements CircleFitAlgebraic { 044 045 private final double[] q; // q = (A,B,C,D) circle parameters 046 047 /** 048 * Constructor. The centroid of the sample points is used as the reference point. 049 * 050 * @param points sample points 051 */ 052 public CircleFitHyperStable(Pnt2d[] points) { 053 this.q = fit(points, null); 054 } 055 056 /** 057 * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null} 058 * is passed for {@code xref}. 059 * 060 * @param points sample points 061 * @param xref reference point or {@code null} 062 */ 063 public CircleFitHyperStable(Pnt2d[] points, Pnt2d xref) { 064 this.q = fit(points, xref); 065 } 066 067 @Override 068 public double[] getParameters() { 069 return this.q; 070 } 071 072 // ------------------------------------------------------------------------- 073 074 private double[] fit(Pnt2d[] pts, Pnt2d xref) { 075 final int n = pts.length; 076 if (n < 3) { 077 throw new IllegalArgumentException("at least 3 points are required"); 078 } 079 080 if (xref == null) { 081 xref = PntUtils.centroid(pts); 082 } 083 final double xr = xref.getX(); 084 final double yr = xref.getY(); 085 086 double[][] Xa = new double[n][]; 087 double xs = 0; 088 double ys = 0; 089 double zs = 0; 090 for (int i = 0; i < n; i++) { 091 double x = pts[i].getX() - xr; 092 double y = pts[i].getY() - yr; 093 double z = sqr(x) + sqr(y); 094 Xa[i] = new double[] {z, x, y, 1}; 095 xs = xs + x; 096 ys = ys + y; 097 zs = zs + z; 098 } 099 100 RealMatrix X = MatrixUtils.createRealMatrix(Xa); 101 SingularValueDecomposition svd = new SingularValueDecomposition(X); 102 RealMatrix S = svd.getS(); 103 RealMatrix V = svd.getV(); 104 double[] svals = svd.getSingularValues(); // note: singular values are all positive 105 106 int k = Matrix.idxMin(svals); 107 double smin = svals[k]; 108 double smax = svals[Matrix.idxMax(svals)]; 109 double icond = smin / smax; // inverse condition number of X 110 RealVector qq = null; // solution vector (circle parameters) 111 112 if (icond < 1e-12) { // singular case 113 qq = V.getColumnVector(k); // take the vector for smallest singular value as the solution 114 } 115 else { // regular (non-singular) case 116 double xm = xs / n; 117 double ym = ys / n; 118 double zm = zs / n; 119 // data-dependent constraint matrix: 120// RealMatrix C = MatrixUtils.createRealMatrix(new double[][] 121// {{ 8 * zm, 4 * xm, 4 * ym, 2 }, 122// { 4 * xm, 1, 0, 0 }, 123// { 4 * ym, 0, 1, 0 }, 124// { 2, 0, 0, 0 }}); 125// RealMatrix Ci = MatrixUtils.inverse(C); 126 127 // define the inverse constraint matrix directly: 128 RealMatrix Ci = MatrixUtils.createRealMatrix(new double[][] 129 {{ 0, 0, 0, 0.5 }, 130 { 0, 1, 0, -2 * xm }, 131 { 0, 0, 1, -2 * ym }, 132 { 0.5, -2 * xm, -2 * ym, 4 * (sqr(xm) + sqr(ym)) - 2 * zm }}); 133 134 RealMatrix W = V.multiply(S).multiply(V.transpose()); 135 RealMatrix Z = W.multiply(Ci).multiply(W); 136 137// EigenDecomposition ed = new EigenDecomposition(Z); 138 EigenDecompositionJama ed = new EigenDecompositionJama(Z); 139 double[] evals = ed.getRealEigenvalues(); 140 141 int l = new PrimitiveSortMap(evals).getIndex(1); // index of the 2nd-smallest eigenvalue 142 RealVector el = ed.getEigenvector(l); 143 144// qq = Matrix.solve(W, el); // may return null! 145 qq = MatrixUtils.inverse(W).operate(el); // alt. 1 (qq = Y^-1 * el) 146// qq = V.multiply(MatrixUtils.inverse(S)).multiply(V.transpose()).operate(el); // alt. 2 (S is diagonal!) 147 } 148 149 // re-adjust circle parameters for data centering: 150 RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr); 151 return M.operate(qq).toArray(); // q = (A, B, C, D) 152 } 153 154}