001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.circle.algebraic;
010
011
012import imagingbook.common.geometry.basic.Pnt2d;
013import imagingbook.common.geometry.basic.PntUtils;
014import imagingbook.common.math.PrintPrecision;
015import imagingbook.common.math.eigen.EigenDecompositionJama;
016import imagingbook.common.util.PrimitiveSortMap;
017import org.apache.commons.math3.linear.MatrixUtils;
018import org.apache.commons.math3.linear.RealMatrix;
019import org.apache.commons.math3.linear.RealVector;
020
021import static imagingbook.common.math.Arithmetic.sqr;
022
023/**
024 * <p>
025 * This is an implementation of the "hyperaccurate" algebraic circle fit proposed by Al-Sharadqah and Chernov in [1],
026 * also described in [2] (Sec. 7.5, Eq. 744). This method combines the Pratt and Taubin fits to eliminate the essential
027 * bias. This version is "optimized for speed, not for stability" (see https://people.cas.uab.edu/~mosya/cl/Hyper.m),
028 * also referred to as "simple" version. Fits to exactly 3 (non-collinear) points are handled properly. Data centering
029 * is used to improve numerical stability (alternatively, a reference point can be specified). Note that this algorithm
030 * may fail on certain critical point constellations, see {@link CircleFitHyperStable} for a superior implementation.
031 * </p>
032 * <p>
033 * [1] A. Al-Sharadqah and N. Chernov. "Error analysis for circle fitting algorithms".
034 * <em>Electronic Journal of Statistics</em>, 3:886–911 (2009).
035 * <br>
036 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on
037 * Statistics and Applied Probability. Taylor &amp; Francis (2011).
038 * </p>
039 *
040 * @author WB
041 */
042public class CircleFitHyperSimple implements CircleFitAlgebraic {
043
044        private final double[] q;       // q = (A,B,C,D) circle parameters
045
046        /**
047         * Constructor. The centroid of the sample points is used as the reference point.
048         *
049         * @param points sample points
050         */
051        public CircleFitHyperSimple(Pnt2d[] points) {
052                this(points, null);
053        }
054
055        /**
056         * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null}
057         * is passed for {@code xref}.
058         *
059         * @param points sample points
060         * @param xref reference point or {@code null}
061         */
062        public CircleFitHyperSimple(Pnt2d[] points, Pnt2d xref) {
063                this.q = fit(points, xref);
064        }
065
066        @Override
067        public double[] getParameters() {
068                return this.q;
069        }
070
071        // -------------------------------------------------------------------------
072
073        private double[] fit(Pnt2d[] pts, Pnt2d xref) {
074                PrintPrecision.set(3);
075
076                final int n = pts.length;
077                if (n < 3) {
078                        throw new IllegalArgumentException("at least 3 points are required");
079                }
080                
081                if (xref == null) {
082                        xref = PntUtils.centroid(pts);
083                }
084                final double xr = xref.getX();
085                final double yr = xref.getY();
086
087                double[][] Xa = new double[n][];
088                double xs = 0;  // sum of x_i
089                double ys = 0;  // sum of y_i
090                double zs = 0;  // sum of z_i
091                for (int i = 0; i < n; i++) {
092                        double x = pts[i].getX() - xr;
093                        double y = pts[i].getY() - yr;
094                        double z = sqr(x) + sqr(y);
095                        Xa[i] = new double[] {z, x, y, 1};
096                        xs = xs + x;
097                        ys = ys + y;
098                        zs = zs + z;
099                }
100
101                double xm = xs / n;     // mean of x_i
102                double ym = ys / n;     // mean of y_i
103                double zm = zs / n;     // mean of z_i
104
105                RealMatrix X = MatrixUtils.createRealMatrix(Xa);
106                RealMatrix D = (X.transpose()).multiply(X);
107
108                // data-dependent constraint matrix:
109//              RealMatrix C = MatrixUtils.createRealMatrix(new double[][]
110//                              {{ 8 * zm, 4 * xm, 4 * ym, 2 },
111//                               { 4 * xm, 1,      0,      0 },
112//                               { 4 * ym, 0,      1,      0 },
113//                               { 2,      0,      0,      0 }});
114//              RealMatrix Ci = MatrixUtils.inverse(C);
115                
116                // define the inverse constraint matrix directly:
117                RealMatrix Ci = MatrixUtils.createRealMatrix(new double[][]
118                                {{ 0,   0, 0, 0.5 }, 
119                                 { 0,   1, 0, -2 * xm }, 
120                                 { 0,   0, 1, -2 * ym },
121                                 { 0.5, -2 * xm, -2 * ym, 4 * (sqr(xm) + sqr(ym)) - 2 * zm }});
122
123                RealMatrix CiD = Ci.multiply(D);
124                EigenDecompositionJama ed = new EigenDecompositionJama(CiD);
125                double[] evals = ed.getRealEigenvalues();
126                
127                int l = new PrimitiveSortMap(evals).getIndex(1);        // index of the 2nd-smallest eigenvalue (1st is negative)
128                RealVector qq = ed.getEigenvector(l);
129                
130                RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr);
131                return M.operate(qq).toArray(); // q = (A, B, C, D)             
132        }
133
134}