001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.circle.algebraic; 010 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.basic.PntUtils; 014import imagingbook.common.math.PrintPrecision; 015import imagingbook.common.math.eigen.EigenDecompositionJama; 016import imagingbook.common.util.PrimitiveSortMap; 017import org.apache.commons.math3.linear.MatrixUtils; 018import org.apache.commons.math3.linear.RealMatrix; 019import org.apache.commons.math3.linear.RealVector; 020 021import static imagingbook.common.math.Arithmetic.sqr; 022 023/** 024 * <p> 025 * This is an implementation of the "hyperaccurate" algebraic circle fit proposed by Al-Sharadqah and Chernov in [1], 026 * also described in [2] (Sec. 7.5, Eq. 744). This method combines the Pratt and Taubin fits to eliminate the essential 027 * bias. This version is "optimized for speed, not for stability" (see https://people.cas.uab.edu/~mosya/cl/Hyper.m), 028 * also referred to as "simple" version. Fits to exactly 3 (non-collinear) points are handled properly. Data centering 029 * is used to improve numerical stability (alternatively, a reference point can be specified). Note that this algorithm 030 * may fail on certain critical point constellations, see {@link CircleFitHyperStable} for a superior implementation. 031 * </p> 032 * <p> 033 * [1] A. Al-Sharadqah and N. Chernov. "Error analysis for circle fitting algorithms". 034 * <em>Electronic Journal of Statistics</em>, 3:886–911 (2009). 035 * <br> 036 * [2] N. Chernov. "Circular and Linear Regression: Fitting Circles and Lines by Least Squares". Monographs on 037 * Statistics and Applied Probability. Taylor & Francis (2011). 038 * </p> 039 * 040 * @author WB 041 */ 042public class CircleFitHyperSimple implements CircleFitAlgebraic { 043 044 private final double[] q; // q = (A,B,C,D) circle parameters 045 046 /** 047 * Constructor. The centroid of the sample points is used as the reference point. 048 * 049 * @param points sample points 050 */ 051 public CircleFitHyperSimple(Pnt2d[] points) { 052 this(points, null); 053 } 054 055 /** 056 * Constructor. The centroid of the sample points is used as the reference point for data centering if {@code null} 057 * is passed for {@code xref}. 058 * 059 * @param points sample points 060 * @param xref reference point or {@code null} 061 */ 062 public CircleFitHyperSimple(Pnt2d[] points, Pnt2d xref) { 063 this.q = fit(points, xref); 064 } 065 066 @Override 067 public double[] getParameters() { 068 return this.q; 069 } 070 071 // ------------------------------------------------------------------------- 072 073 private double[] fit(Pnt2d[] pts, Pnt2d xref) { 074 PrintPrecision.set(3); 075 076 final int n = pts.length; 077 if (n < 3) { 078 throw new IllegalArgumentException("at least 3 points are required"); 079 } 080 081 if (xref == null) { 082 xref = PntUtils.centroid(pts); 083 } 084 final double xr = xref.getX(); 085 final double yr = xref.getY(); 086 087 double[][] Xa = new double[n][]; 088 double xs = 0; // sum of x_i 089 double ys = 0; // sum of y_i 090 double zs = 0; // sum of z_i 091 for (int i = 0; i < n; i++) { 092 double x = pts[i].getX() - xr; 093 double y = pts[i].getY() - yr; 094 double z = sqr(x) + sqr(y); 095 Xa[i] = new double[] {z, x, y, 1}; 096 xs = xs + x; 097 ys = ys + y; 098 zs = zs + z; 099 } 100 101 double xm = xs / n; // mean of x_i 102 double ym = ys / n; // mean of y_i 103 double zm = zs / n; // mean of z_i 104 105 RealMatrix X = MatrixUtils.createRealMatrix(Xa); 106 RealMatrix D = (X.transpose()).multiply(X); 107 108 // data-dependent constraint matrix: 109// RealMatrix C = MatrixUtils.createRealMatrix(new double[][] 110// {{ 8 * zm, 4 * xm, 4 * ym, 2 }, 111// { 4 * xm, 1, 0, 0 }, 112// { 4 * ym, 0, 1, 0 }, 113// { 2, 0, 0, 0 }}); 114// RealMatrix Ci = MatrixUtils.inverse(C); 115 116 // define the inverse constraint matrix directly: 117 RealMatrix Ci = MatrixUtils.createRealMatrix(new double[][] 118 {{ 0, 0, 0, 0.5 }, 119 { 0, 1, 0, -2 * xm }, 120 { 0, 0, 1, -2 * ym }, 121 { 0.5, -2 * xm, -2 * ym, 4 * (sqr(xm) + sqr(ym)) - 2 * zm }}); 122 123 RealMatrix CiD = Ci.multiply(D); 124 EigenDecompositionJama ed = new EigenDecompositionJama(CiD); 125 double[] evals = ed.getRealEigenvalues(); 126 127 int l = new PrimitiveSortMap(evals).getIndex(1); // index of the 2nd-smallest eigenvalue (1st is negative) 128 RealVector qq = ed.getEigenvector(l); 129 130 RealMatrix M = CircleFitAlgebraic.getDecenteringMatrix(xr, yr); 131 return M.operate(qq).toArray(); // q = (A, B, C, D) 132 } 133 134}