001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.geometry.fd;
011
012import imagingbook.common.geometry.basic.Pnt2d;
013import imagingbook.common.geometry.basic.Pnt2d.PntDouble;
014
015/**
016 * <p>
017 * This class is used to re-sample 2D polygons by interpolation. See Sec. 2.1.1 (Alg. 26.1) if [1] for details. Note
018 * that this class has no public constructor, use {@link #getInstance()} instead.
019 * </p>
020 * <p>
021 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction Using Java</em>, 2rd ed,
022 * Springer (2016).
023 * </p>
024 *
025 * @author WB
026 * @version 2022/10/26
027 */
028public class PolygonSampler {   // TODO: add unit tests
029        
030        private static final PolygonSampler instance = new PolygonSampler();
031        
032        private PolygonSampler() {}
033        
034        public static PolygonSampler getInstance() {
035                return instance;
036        }
037
038        /**
039         * Samples the closed polygon path specified by V at M equidistant positions.
040         *
041         * @param V the vertices of the (closed) polygon.
042         * @param M the number of sample points.
043         * @return the sample points as an array of Point objects.
044         */
045        public Pnt2d[] samplePolygon(Pnt2d[] V, int M) {
046                int N = V.length;
047                double Delta = pathLength(V) / M;       // constant segment length in Q
048                // distribute N points along polygon path P
049                Pnt2d[] S = new Pnt2d[M];
050//              S[0] = (Point) V[0].clone();            // q_0 = p_0 (duplicate p_0)
051                S[0] = PntDouble.from(V[0]);            // q_0 = p_0 (duplicate p_0)
052                int i = 0;                      // lower index of segment (i,i+1) in P
053                int j = 1;                      // index of next point to be added to Q
054                double alpha = 0;       // lower boundary of current path segment in P
055                double beta = Delta;    // path position of next point to be added to Q
056                // for all M segments in P do:
057                while (i < N && j < M) {
058                        Pnt2d vA = V[i];
059                        Pnt2d vB = V[(i + 1) % N];
060                        double delta = vA.distance(vB);
061                        // handle segment (i,i+1) with path boundaries (a,a+d), knowing a < b
062                        while (beta <= alpha + delta && j < M) {
063                                // a < b <= a+d
064                                S[j] = interpolate(vA, vB, (beta - alpha) / delta);
065                                j = j + 1;
066                                beta = beta + Delta;
067                        }
068                        alpha = alpha + delta;
069                        i = i + 1;
070                }       
071                return S;
072        }
073
074        /**
075         * For testing only: allows to choose an arbitrary start point by setting 'startFrac' in [0,1].
076         *
077         * @param V the vertices of the (closed) polygon.
078         * @param M the number of sample points.
079         * @param startFrac the position of the first sample as a fraction of the polggon's circumference in [0,1].
080         * @return the sample points as an array of Point objects.
081         */
082        public Pnt2d[] samplePolygon(Pnt2d[] V, int M, double startFrac) {
083                int startPos = (int) Math.round(V.length * startFrac) % V.length;
084                return samplePolygon(shiftLeft(V, startPos), M);
085        }
086        
087        private Pnt2d[] shiftLeft(Pnt2d[] V, int startPos) {
088                int polyLen = V.length;
089                Pnt2d[] P2 = new Pnt2d[polyLen]; 
090                for (int i = 0; i < P2.length; i++) {
091//                      P2[i] = (Point) V[(i + startPos) % polyLen].clone();
092                        P2[i] = PntDouble.from(V[(i + startPos) % polyLen]);
093                }
094                return P2;
095        }
096        
097        
098        private double pathLength(Pnt2d[] V) {
099                double L = 0;
100                final int N = V.length;
101                for (int i = 0; i < N; i++) {
102                        Pnt2d p0 = V[i];
103                        Pnt2d p1 = V[(i + 1) % N];
104                        L = L + p0.distance(p1);
105                }
106                return L;
107        }
108        
109        private Pnt2d interpolate(Pnt2d p0, Pnt2d p1, double alpha) {
110                // alpha is in [0,1]
111                double x = p0.getX() + alpha * (p1.getX() - p0.getX());
112                double y = p0.getY() + alpha * (p1.getY() - p0.getY());
113                return Pnt2d.PntDouble.from(x, y);
114        }
115        
116}