001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fd;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.math.Arithmetic;
013import imagingbook.common.math.Complex;
014
015/**
016 * <p>
017 * Defines static methods to create Fourier descriptors from uniformly sampled point sequences. See Ch. 26 of [1] for
018 * additional details.
019 * </p>
020 * <p>
021 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction Using Java</em>, 2nd ed,
022 * Springer (2016).
023 * </p>
024 *
025 * @author WB
026 * @version 2022/10/24
027 */
028public abstract class FourierDescriptorUniform {
029        
030        private FourierDescriptorUniform() {}
031
032        /**
033         * Creates a new Fourier descriptor from a uniformly sampled polygon V with the maximum number of Fourier
034         * coefficient pairs. The length of the resulting DFT spectrum equals V.length.
035         *
036         * @param V a polygon
037         * @return a new {@link FourierDescriptorUniform} instance
038         */
039        public static FourierDescriptor from(Pnt2d[] V) {
040                return from(FourierDescriptor.toComplexArray(V));
041        }
042
043        /**
044         * Creates a new Fourier descriptor from a uniformly sampled polygon V with Mp coefficient pairs. The length of the
045         * resulting DFT spectrum is 2 * mp + 1, i.e., it must be assured that Mp &lt; (V.length - 1) &divide; 2.
046         *
047         * @param V a polygon
048         * @param mp number of coefficient pairs
049         * @return a new {@link FourierDescriptorUniform} instance
050         */
051        public static FourierDescriptor from(Pnt2d[] V, int mp) {
052                return from(FourierDescriptor.toComplexArray(V), mp);
053        }
054        
055        
056        // -------------------------------------------------------------------
057
058        /**
059         * Creates a new Fourier descriptor from a uniformly sampled polygon V with the maximum number of Fourier
060         * coefficient pairs. The length of the resulting DFT spectrum equals V.length.
061         *
062         * @param V a polygon
063         * @return a new {@link FourierDescriptorUniform} instance
064         */
065        public static FourierDescriptor from(Complex[] V) {
066                return new FourierDescriptor(DFT(V));
067        }
068
069        /**
070         * Creates a new Fourier descriptor from a uniformly sampled polygon V with Mp coefficient pairs. The length of the
071         * resulting DFT spectrum is 2 * mp + 1, i.e., it must be assured that Mp &lt; (V.length - 1) &divide; 2.
072         *
073         * @param V a sequence of uniformly-spaced 2D sample points
074         * @param mp number of coefficient pairs
075         * @return a new {@link FourierDescriptorUniform} instance
076         */
077        public static FourierDescriptor from(Complex[] V, int mp) {
078                if (mp > (V.length - 1) / 2) {
079                        throw new IllegalArgumentException("number of Fourier pairs (mp) may not be greater than " 
080                                                        + ((V.length - 1) / 2));
081                }
082                return new FourierDescriptor(DFT(V, 2 * mp + 1));
083        }
084        
085        // -------------------------------------------------------------------
086
087        /**
088         * DFT with the resulting spectrum (signal, if inverse) of the same length as the input vector g. Not using sin/cos
089         * tables.
090         *
091         * @param g signal vector
092         * @return DFT spectrum
093         */
094        private static Complex[] DFT(Complex[] g) {
095                int M = g.length;
096//              double[] cosTable = makeCosTable(M);    // cosTable[m] == cos(2*pi*m/M)
097//              double[] sinTable = makeSinTable(M);    // sinTable[m] == sin(2*pi*m/M)
098                Complex[] G = new Complex[M];
099                double s = 1.0 / M; //common scale factor (fwd/inverse differ!)
100                for (int m = 0; m < M; m++) {
101                        double Am = 0;
102                        double Bm = 0;
103                        for (int k = 0; k < M; k++) {
104                                double x = g[k].re;
105                                double y = g[k].im;
106                                double phi = 2 * Math.PI * m * k / M;
107                                double cosPhi = Math.cos(phi);
108                                double sinPhi = Math.sin(phi);
109                                Am = Am + x * cosPhi + y * sinPhi;
110                                Bm = Bm - x * sinPhi + y * cosPhi;
111                        }
112                        G[m] = new Complex(s * Am, s * Bm);
113                }
114                return G;
115        }
116
117
118        /**
119         * As {@link #DFT(Complex[])}, with the length of the resulting spectrum (or signal, if inverse) explicitly
120         * specified.
121         *
122         * @param g signal vector
123         * @param MM length of the resulting DFT spectrum
124         * @return DFT spectrum
125         */
126        private static Complex[] DFT(Complex[] g, int MM) {
127                int M = g.length;
128                if (MM > M) {
129                        throw new IllegalArgumentException("truncated spectrum must be shorter than original MM = " + MM);
130                }
131//              double[] cosTable = makeCosTable(M);    // cosTable[m] == cos(2*pi*m/M)
132//              double[] sinTable = makeSinTable(M);    // sinTable[m] == sin(2*pi*m/M)
133                Complex[] G = new Complex[MM];
134                double s = 1.0 / M; //common scale factor (fwd/inverse differ!)
135                
136//              for (int j = Mp/2-Mp+1; j <= Mp/2; j++) {
137                for (int j = -MM/2; j <= (MM-1)/2; j++) {
138                        double Am = 0;
139                        double Bm = 0;
140                        for (int k = 0; k < M; k++) {
141                                double x = g[k].re;
142                                double y = g[k].im;
143                                //int mk = (m * k) % M; double phi = 2 * Math.PI * mk / M;
144                                double phi = 2 * Math.PI * j * k / M;   
145                                double cosPhi = Math.cos(phi);
146                                double sinPhi = Math.sin(phi);
147                                Am = Am + x * cosPhi + y * sinPhi;
148                                Bm = Bm - x * sinPhi + y * cosPhi;
149                        }
150                        G[Arithmetic.mod(j, MM)] = new Complex(s * Am, s * Bm);
151                }
152                return G;
153        }
154
155//      private double[] makeCosTable(int M) {
156//              double[] cosTab = new double[M];
157//              for (int m = 0; m < M; m++) {
158//                      cosTab[m] = Math.cos(2 * Math.PI * m / M);
159//              }
160//              return cosTab;
161//      }
162
163//      private double[] makeSinTable(int M) {
164//              double[] sinTab = new double[M];
165//              for (int m = 0; m < M; m++) {
166//                      sinTab[m] = Math.sin(2 * Math.PI * m / M);
167//              }
168//              return sinTab;
169//      }
170        
171}