001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fd;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.math.Arithmetic;
013import imagingbook.common.math.Complex;
014
015import static imagingbook.common.math.Arithmetic.mod;
016import static imagingbook.common.math.Arithmetic.sqr;
017import static java.lang.Math.PI;
018import static java.lang.Math.cos;
019import static java.lang.Math.sin;
020import static java.lang.Math.sqrt;
021
022/**
023 * <p>
024 * Defines static methods to create Fourier descriptors directly from 2D polygons without re-sampling or interpolation.
025 * See Ch. 26 of [1] for additional details.
026 * </p>
027 * <p>
028 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction Using Java</em>, 2nd ed,
029 * Springer (2016).
030 * </p>
031 *
032 * @author WB
033 * @version 2022/10/24
034 */
035public abstract class FourierDescriptorTrigonometric {
036        
037        private FourierDescriptorTrigonometric() {}
038
039        /**
040         * Creates a {@link FourierDescriptor} directly from the vertices of a closed polygon (without interpolation). For a
041         * given number (mp) of Fourier coefficient pairs, the resulting number of Fourier coefficients is M = 2 * mp + 1.
042         *
043         * @param V sequence of 2D points representing a closed polygon
044         * @param mp the number of Fourier coefficient pairs (arbitrary)
045         * @return a new {@link FourierDescriptorTrigonometric} instance
046         */
047        public static FourierDescriptor from(Pnt2d[] V, int mp) {
048                Complex[] G = makeDftSpectrumTrigonometric(FourierDescriptor.toComplexArray(V), mp);
049                return new FourierDescriptor(G);
050        }
051
052        // ---------------------------------------------------------------------------
053        
054        private static Complex[] makeDftSpectrumTrigonometric(Complex[] g, int mp) {
055                final int N = g.length;                         // number of polygon vertices
056                final int M = 2 * mp + 1;                       // number of Fourier coefficients (always odd)
057                final double[] dx = new double[N];              // dx[k] is the delta-x for polygon segment <k,k+1>
058                final double[] dy = new double[N];              // dy[k] is the delta-y for polygon segment <k,k+1>
059                final double[] lambda = new double[N];  // lambda[k] is the length of the polygon segment <k,k+1>
060                final double[] L  = new double[N + 1];  // T[k] is the cumulated path length at polygon vertex k in [0,K]
061        
062        Complex[] G = new Complex[M];
063        
064        L[0] = 0;
065        for (int i = 0; i < N; i++) {   // compute Dx, Dy, Dt and t tables
066            dx[i] = g[(i + 1) % N].re - g[i].re;
067            dy[i] = g[(i + 1) % N].im - g[i].im;
068            lambda[i] = sqrt(sqr(dx[i]) + sqr(dy[i]));  // TODO: use hypot()
069            if (Arithmetic.isZero(lambda[i])) {
070                        throw new Error("zero-length polygon segment!");
071                }
072            L[i+1] = L[i] + lambda[i];
073        }
074        
075        double Ln = L[N];       // Ln is the closed polygon length
076               
077        // calculate DFT coefficient G[0]:
078        double x0 = g[0].re; // V[0].getX();
079        double y0 = g[0].im; // V[0].getY();
080        double a0 = 0;
081        double c0 = 0;
082        for (int i = 0; i < N; i++) {   // for each polygon vertex
083                double s = (sqr(L[i+1]) - sqr(L[i])) / (2 * lambda[i]) - L[i];
084                double xi = g[i].re; // V[i].getX();
085                double yi = g[i].im; // V[i].getY();
086                a0 = a0 + s * dx[i] + (xi - x0) * lambda[i];
087                c0 = c0 + s * dy[i] + (yi - y0) * lambda[i];
088        }
089        //G[0] = new Complex(x0 + a0/Ln, y0 + c0/Ln);
090        setCoefficient(G, 0, new Complex(x0 + a0/Ln, y0 + c0/Ln));
091        
092        // calculate remaining FD pairs G[-m], G[+m] for m = 1,...,Mp
093        for (int m = 1; m <= mp; m++) { // for each FD pair
094                double w = 2 * PI * m / Ln;
095                double a = 0, c = 0;
096                double b = 0, d = 0;
097            for (int i = 0; i < N; i++) {       //      for each polygon vertex
098                double w0 = w * L[i];                           
099                double w1 = w * L[(i + 1) % N];         
100                double dCos = cos(w1) - cos(w0);
101                a = a + dCos * (dx[i] / lambda[i]);
102                c = c + dCos * (dy[i] / lambda[i]);
103                double dSin = sin(w1) - sin(w0);
104                b = b + dSin * (dx[i] / lambda[i]);
105                d = d + dSin * (dy[i] / lambda[i]);
106            }
107            double s = Ln / sqr(2 * PI * m);
108            setCoefficient(G, +m, new Complex(s * (a + d), s * (c - b)));
109            setCoefficient(G, -m, new Complex(s * (a - d), s * (b + c)));
110        }
111        
112        return G;
113        }
114        
115        private static void setCoefficient(Complex[] C, int m, Complex z) {
116                C[mod(m, C.length)] = z;
117        }
118        
119//      private static void setCoefficient(Complex[] G, int m, Complex z) {
120//              int mm = Arithmetic.mod(m, G.length);
121//              G[mm] = new Complex(z);
122//      }
123
124}