001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fd; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.math.Arithmetic; 013import imagingbook.common.math.Complex; 014 015import static imagingbook.common.math.Arithmetic.mod; 016import static imagingbook.common.math.Arithmetic.sqr; 017import static java.lang.Math.PI; 018import static java.lang.Math.cos; 019import static java.lang.Math.sin; 020import static java.lang.Math.sqrt; 021 022/** 023 * <p> 024 * Defines static methods to create Fourier descriptors directly from 2D polygons without re-sampling or interpolation. 025 * See Ch. 26 of [1] for additional details. 026 * </p> 027 * <p> 028 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction Using Java</em>, 2nd ed, 029 * Springer (2016). 030 * </p> 031 * 032 * @author WB 033 * @version 2022/10/24 034 */ 035public abstract class FourierDescriptorTrigonometric { 036 037 private FourierDescriptorTrigonometric() {} 038 039 /** 040 * Creates a {@link FourierDescriptor} directly from the vertices of a closed polygon (without interpolation). For a 041 * given number (mp) of Fourier coefficient pairs, the resulting number of Fourier coefficients is M = 2 * mp + 1. 042 * 043 * @param V sequence of 2D points representing a closed polygon 044 * @param mp the number of Fourier coefficient pairs (arbitrary) 045 * @return a new {@link FourierDescriptorTrigonometric} instance 046 */ 047 public static FourierDescriptor from(Pnt2d[] V, int mp) { 048 Complex[] G = makeDftSpectrumTrigonometric(FourierDescriptor.toComplexArray(V), mp); 049 return new FourierDescriptor(G); 050 } 051 052 // --------------------------------------------------------------------------- 053 054 private static Complex[] makeDftSpectrumTrigonometric(Complex[] g, int mp) { 055 final int N = g.length; // number of polygon vertices 056 final int M = 2 * mp + 1; // number of Fourier coefficients (always odd) 057 final double[] dx = new double[N]; // dx[k] is the delta-x for polygon segment <k,k+1> 058 final double[] dy = new double[N]; // dy[k] is the delta-y for polygon segment <k,k+1> 059 final double[] lambda = new double[N]; // lambda[k] is the length of the polygon segment <k,k+1> 060 final double[] L = new double[N + 1]; // T[k] is the cumulated path length at polygon vertex k in [0,K] 061 062 Complex[] G = new Complex[M]; 063 064 L[0] = 0; 065 for (int i = 0; i < N; i++) { // compute Dx, Dy, Dt and t tables 066 dx[i] = g[(i + 1) % N].re - g[i].re; 067 dy[i] = g[(i + 1) % N].im - g[i].im; 068 lambda[i] = sqrt(sqr(dx[i]) + sqr(dy[i])); // TODO: use hypot() 069 if (Arithmetic.isZero(lambda[i])) { 070 throw new Error("zero-length polygon segment!"); 071 } 072 L[i+1] = L[i] + lambda[i]; 073 } 074 075 double Ln = L[N]; // Ln is the closed polygon length 076 077 // calculate DFT coefficient G[0]: 078 double x0 = g[0].re; // V[0].getX(); 079 double y0 = g[0].im; // V[0].getY(); 080 double a0 = 0; 081 double c0 = 0; 082 for (int i = 0; i < N; i++) { // for each polygon vertex 083 double s = (sqr(L[i+1]) - sqr(L[i])) / (2 * lambda[i]) - L[i]; 084 double xi = g[i].re; // V[i].getX(); 085 double yi = g[i].im; // V[i].getY(); 086 a0 = a0 + s * dx[i] + (xi - x0) * lambda[i]; 087 c0 = c0 + s * dy[i] + (yi - y0) * lambda[i]; 088 } 089 //G[0] = new Complex(x0 + a0/Ln, y0 + c0/Ln); 090 setCoefficient(G, 0, new Complex(x0 + a0/Ln, y0 + c0/Ln)); 091 092 // calculate remaining FD pairs G[-m], G[+m] for m = 1,...,Mp 093 for (int m = 1; m <= mp; m++) { // for each FD pair 094 double w = 2 * PI * m / Ln; 095 double a = 0, c = 0; 096 double b = 0, d = 0; 097 for (int i = 0; i < N; i++) { // for each polygon vertex 098 double w0 = w * L[i]; 099 double w1 = w * L[(i + 1) % N]; 100 double dCos = cos(w1) - cos(w0); 101 a = a + dCos * (dx[i] / lambda[i]); 102 c = c + dCos * (dy[i] / lambda[i]); 103 double dSin = sin(w1) - sin(w0); 104 b = b + dSin * (dx[i] / lambda[i]); 105 d = d + dSin * (dy[i] / lambda[i]); 106 } 107 double s = Ln / sqr(2 * PI * m); 108 setCoefficient(G, +m, new Complex(s * (a + d), s * (c - b))); 109 setCoefficient(G, -m, new Complex(s * (a - d), s * (b + c))); 110 } 111 112 return G; 113 } 114 115 private static void setCoefficient(Complex[] C, int m, Complex z) { 116 C[mod(m, C.length)] = z; 117 } 118 119// private static void setCoefficient(Complex[] G, int m, Complex z) { 120// int mm = Arithmetic.mod(m, G.length); 121// G[mm] = new Complex(z); 122// } 123 124}