001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.geometry.fd; 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.math.Complex; 014import org.apache.commons.math3.analysis.UnivariateFunction; 015import org.apache.commons.math3.optim.MaxEval; 016import org.apache.commons.math3.optim.nonlinear.scalar.GoalType; 017import org.apache.commons.math3.optim.univariate.BrentOptimizer; 018import org.apache.commons.math3.optim.univariate.SearchInterval; 019import org.apache.commons.math3.optim.univariate.UnivariateObjectiveFunction; 020import org.apache.commons.math3.optim.univariate.UnivariateOptimizer; 021import org.apache.commons.math3.optim.univariate.UnivariatePointValuePair; 022 023import java.awt.Shape; 024import java.awt.geom.AffineTransform; 025import java.awt.geom.Ellipse2D; 026import java.awt.geom.Path2D; 027import java.util.Locale; 028 029import static imagingbook.common.math.Arithmetic.mod; 030import static imagingbook.common.math.Arithmetic.sqr; 031 032/** 033 * <p> 034 * This class represents elliptic Fourier descriptors. See Ch. 26 of [1] for additional details including invariance 035 * calculations. 036 * </p> 037 * <p> 038 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction Using Java</em>, 2nd ed, 039 * Springer (2016). 040 * </p> 041 * 042 * @author WB 043 * @version 2022/10/24 044 * @see FourierDescriptorUniform 045 * @see FourierDescriptorTrigonometric 046 */ 047public class FourierDescriptor { 048 049 public static final int MinReconstructionSamples = 50; 050 051 private final int mp; // number of Fourier pairs 052 private final Complex[] G; // complex-valued DFT spectrum (of length 2 * mp + 1) 053 private final double scale; // scale factor to apply for reconstructing original (sample) size 054 055 /** 056 * Constructor using the default scale (1.0). 057 * 058 * @param G a complex-valued DFT spectrum 059 */ 060 public FourierDescriptor(Complex[] G) { 061 this(G, 1.0); 062 } 063 064 /** 065 * Constructor using a specific scale. 066 * 067 * @param G a complex-valued DFT spectrum 068 * @param scale the reconstruction scale 069 */ 070 public FourierDescriptor(Complex[] G, double scale) { 071 this.mp = (G.length - 1) / 2; 072 this.G = truncate(G, this.mp); // always make G odd-sized 073 this.scale = scale; 074 } 075 076 /** 077 * Constructor for cloning Fourier descriptors. 078 * 079 * @param fd an existing instance 080 */ 081 public FourierDescriptor(FourierDescriptor fd) { 082 this(fd.G.clone(), fd.scale); 083 } 084 085 // ---------------------------------------------------------------- 086 087 /** 088 * <p> 089 * Truncate the given DFT spectrum to the specified number of coefficient pairs. Truncation removes the 090 * highest-frequency coefficients. The resulting spectrum is always odd-sized. If the number of coefficient pairs is 091 * zero, only coefficient 0 remains, i.e., the new spectrum has length 1. An exception is thrown if the original 092 * spectrum has fewer coefficient pairs than needed. For example, for an even-sized spectrum with 10 coefficients 093 * G[m] = a,b,...,j, 094 * </p> 095 * <pre> 096 * m = 0 1 2 3 4 5 6 7 8 9 097 * G[m] = a b c d e f g h i j </pre> 098 * <p> 099 * the truncated spectrum for mp = 3 is 100 * </p> 101 * <pre> 102 * m' = 0 1 2 3 4 5 6 103 * G[m'] = a b c d h i j </pre> 104 * <p> 105 * I.e., the highest frequency coefficients (e, f, g) of the original spectrum are removed. 106 * 107 * @param G the original DFT spectrum (with length greater than 2 * mp + 1) 108 * @param mp the number of remaining coefficient pairs. 109 * @return the truncated spectrum (always odd-sized) 110 */ 111 static Complex[] truncate(Complex[] G, int mp) { 112 if (mp < 0) { 113 throw new IllegalArgumentException("number of coefficient pairs must be >= 0 but is " + mp); 114 } 115 int M = G.length; 116 int Mnew = 2 * mp + 1; 117 if (Mnew > M) { 118 throw new IllegalArgumentException("spectrum has fewer coefficient pairs than needed"); 119 } 120 Complex[] Gnew = new Complex[Mnew]; 121 // fill the new spectrum: 122 for (int m = 0; m < Mnew; m++) { 123 if (m <= Mnew / 2) 124 Gnew[m] = G[m]; 125 else 126 Gnew[m] = G[M - Mnew + m]; 127 } 128 return Gnew; 129 } 130 131 /** 132 * Truncates the given DFT spectrum to the maximum number of coefficient pairs. The resulting spectrum is always 133 * odd-sized. If the original spectrum is odd-sized, the same spectrum is return, otherwise the single 134 * highest-frequency coefficient is removed. 135 * 136 * @param G the original DFT spectrum 137 * @return the truncated spectrum (always odd-sized) 138 * @see #truncate(Complex[], int) 139 */ 140 static Complex[] truncate(Complex[] G) { 141 return truncate(G, (G.length - 1) / 2); 142 } 143 144 // ---------------------------------------------------------------- 145 146 /** 147 * Returns the size (length) of this Fourier descriptor's array of DFT coefficients G. The resulting value is always 148 * odd. 149 * 150 * @return the size of the DFT coefficient array (M) 151 */ 152 public int size() { 153 return G.length; 154 } 155 156 /** 157 * Returns the scale of this Fourier descriptor, that is, the factor required to scale it to its original (sample) 158 * size. The scale factor is changed in the process of making descriptors scale-invariant. 159 * 160 * @return the scale factor 161 */ 162 public double getScale() { 163 return scale; 164 } 165 166 /** 167 * Returns the number of Fourier coefficient pairs for this descriptor. The result is (M-1)/2, M being the size of 168 * the DFT coefficient array G. 169 * 170 * @return the number of Fourier coefficient pairs 171 */ 172 public int getMp() { 173 return this.mp; 174 } 175 176 /** 177 * Returns the array G = {G[0], ..., G[M-1]} of complex-valued DFT coefficients. 178 * 179 * @return the array of DFT coefficients 180 */ 181 public Complex[] getCoefficients() { 182 return G; 183 } 184 185 /** 186 * <p> 187 * Returns the complex-valued DFT coefficient with the specified frequency index m. The returned coefficient is G[k] 188 * with k = (m mod G.length). Unique coefficients are returned for m = 0, ..., M-1, where M is the size of the DFT 189 * coefficient array, or m = -mp, ..., +mp where mp is the number of coefficient pairs. For example, given a Fourier 190 * descriptor with a 9-element spectrum, 191 * </p> 192 * <pre> 193 * k = 0 1 2 3 4 5 6 7 8 194 * G[k] = a b c d e f g h i </pre> 195 * <p> 196 * the following values are returned: 197 * </p> 198 * <pre> 199 * getCoefficient(0) → G[0] = a 200 * getCoefficient(1) → G[1] = b 201 * ... 202 * getCoefficient(4) → G[4] = e 203 * getCoefficient(-1) → G[8] = i 204 * ... 205 * getCoefficient(-4) → G[5] = f 206 * getCoefficient(-5) → G[4] = e 207 * ...</pre> 208 * 209 * @param m frequency index (positive or negative) 210 * @return the associated DFT coefficient 211 * @see #getCoefficientIndex(int) 212 */ 213 public Complex getCoefficient(int m) { 214 return G[getCoefficientIndex(m)]; 215 } 216 217 /** 218 * Returns the Fourier coefficient pair (G[-m], G[+m]) as a {@link Complex} valued array. 219 * 220 * @param m frequency index 221 * @return the DFT coefficient pair 222 */ 223 public Complex[] getCoefficientPair(int m) { 224 return new Complex[] {G[getCoefficientIndex(-m)], G[getCoefficientIndex(+m)]}; 225 } 226 227 /** 228 * Returns the coefficient array index for the specified frequency index, which may be positive or negative. 229 * 230 * @param m frequency index (positive or negative) 231 * @return the coefficient array index 232 * @see #getCoefficient(int) 233 */ 234 public int getCoefficientIndex(int m) { 235 return mod(m, G.length); 236 } 237 238 // ---------------------------------------------------------------- 239 // Invariance-related methods 240 // ---------------------------------------------------------------- 241 242 /** 243 * <p> 244 * Makes this Fourier descriptor invariant to scale, start-point and rotation. The descriptors center position 245 * (coefficient 0) is preserved. Performs the following normalization steps in sequence: 246 * </p> 247 * <ol> 248 * <li>scale invariance,</li> 249 * <li>start-point invariance,</li> 250 * <li>rotation invariance.</li> 251 * </ol> 252 * <p> 253 * Multiple candidate descriptors are returned, since start-point invariance is 254 * not unique. See Sec. 26.5 (Alg. 26.2) of [1] for additional details. The 255 * original (this) descriptor is not modified. 256 * </p> 257 * <p> 258 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An 259 * Algorithmic Introduction Using Java</em>, 2nd ed, Springer (2016). 260 * </p> 261 * 262 * @return an array of modified Fourier descriptors 263 * @see #makeScaleInvariant() 264 * @see #makeStartPointInvariant() 265 * @see #makeRotationInvariant() 266 */ 267 public FourierDescriptor[] makeInvariant() { 268 // Step 1: make scale invariant 269 FourierDescriptor fdS = this.makeScaleInvariant(); 270 271 // Step 2: make start-point invariant (not unique, produces 2 versions) 272 FourierDescriptor[] fdAB = fdS.makeStartPointInvariant(); 273 274 // Step 3: make all versions rotation invariant 275 for (int i = 0; i < fdAB.length; i++) { 276 fdAB[i] = fdAB[i].makeRotationInvariant(); 277 } 278 279 return fdAB; 280 } 281 282 // ---------------------------------------------------------------- 283 284 /** 285 * Returns a new scale invariant Fourier descriptor by normalizing the L2 norm of the sub-vector {G[-mp], ..., 286 * G[-1], G[1], ..., G[mp]}. Coefficient G_0 remains unmodified. The new Fourier descriptor carries the associated 287 * scale (see {@link #getScale()}). The original Fourier descriptor is not modified. 288 * 289 * @return a new scale-normalized Fourier descriptor 290 */ 291 public FourierDescriptor makeScaleInvariant() { 292 double sum = 0; 293 for (int i = 1; i < G.length; i++) { 294 sum = sum + G[i].abs2(); 295 } 296 double scale = Math.sqrt(sum); // = L2 norm 297 double s = 1 / scale; 298 299 Complex[] G2 = new Complex[G.length]; 300 G2[0] = G[0]; 301 for (int i = 1; i < G2.length; i++) { 302 G2[i] = G[i].multiply(s); 303 } 304 return new FourierDescriptor(G2, scale); 305 } 306 307 /** 308 * Returns a pair of start-point normalized Fourier descriptors. The original Fourier descriptor is not modified. 309 * 310 * @return a pair of start-point normalized Fourier descriptors 311 */ 312 public FourierDescriptor[] makeStartPointInvariant() { 313 double phi = getStartPointPhase(); 314 315 Complex[] Ga = shiftStartPointPhase(phi); 316 Complex[] Gb = shiftStartPointPhase(phi + Math.PI); 317 318 return new FourierDescriptor[] { 319 new FourierDescriptor(Ga, this.scale), 320 new FourierDescriptor(Gb, this.scale)}; 321 } 322 323 private Complex[] shiftStartPointPhase(double phi) { 324 Complex[] Gnew = G.clone(); 325 for (int m = -mp; m <= mp; m++) { 326 if (m != 0) { 327 int k = getCoefficientIndex(m); 328 Gnew[k] = Gnew[k].rotate(m * phi); 329 } 330 } 331 return Gnew; 332 } 333 334 /** 335 * Calculates the 'canonical' start point. This version uses (a) a coarse search for a global maximum of fp() and 336 * subsequently (b) a numerical optimization using Brent's method (implemented with Apache Commons Math). 337 * 338 * @return the "canonical" start point phase 339 */ 340 private double getStartPointPhase() { 341 342 // the 1-dimensional target function to be optimized: 343 UnivariateFunction fp = new UnivariateFunction() { // function to be maximized 344 /** 345 * The value returned is the sum of the cross products of the FD pairs, 346 * with all coefficients rotated to the given start point phase phi. 347 * TODO: This could be made a lot more efficient! 348 */ 349 @Override 350 public double value(double phi) { 351 double sum = 0; 352 for (int m = 1; m <= mp; m++) { 353 Complex Gm = getCoefficient(-m).rotate(-m * phi); 354 Complex Gp = getCoefficient( m).rotate( m * phi); 355 sum = sum + Gp.re * Gm.im - Gp.im * Gm.re; // "cross product" Gp x Gm 356 } 357 return sum; 358 } 359 }; 360 361 // search for the global maximum in coarse steps 362 double cmax = Double.NEGATIVE_INFINITY; 363 int kmax = -1; 364 int K = 25; // do K search steps over 0,...,PI 365 for (int k = 0; k < K; k++) { // find opt. phi by maximizing fp(phi) 366 final double phi = Math.PI * k / K; // phase to evaluate 367 final double c = fp.value(phi); 368 if (c > cmax) { 369 cmax = c; 370 kmax = k; 371 } 372 } 373 374 // final optimize using a BrentOptimizer and previous/next point as the bracket: 375 double minPhi = Math.PI * (kmax - 1) / K; 376 double maxPhi = Math.PI * (kmax + 1) / K; 377 UnivariateOptimizer optimizer = new BrentOptimizer(1E-4, 1E-6); 378 int maxIter = 20; 379 UnivariatePointValuePair result = optimizer.optimize( 380 new MaxEval(maxIter), 381 new UnivariateObjectiveFunction(fp), 382 GoalType.MAXIMIZE, 383 new SearchInterval(minPhi, maxPhi) 384 ); 385 double phi0 = result.getPoint(); 386 return phi0; // the canonical start point phase 387 } 388 389 /** 390 * Returns a new rotation invariant Fourier descriptor by applying complex rotation to all coefficients (except 391 * coefficient 0). The original Fourier descriptor is not modified. 392 * 393 * @return a new rotation-normalized Fourier descriptor 394 */ 395 public FourierDescriptor makeRotationInvariant() { 396 Complex z = new Complex(0,0); 397 for (int m = 1; m <= mp; m++) { 398 final double w = 1.0 / m; // weighting factor emphasizing low-frequency components 399 z = z.add(getCoefficient(-m).multiply(w)); 400 z = z.add(getCoefficient(+m).multiply(w)); 401 } 402 double beta = z.arg(); 403 Complex[] G2 = G.clone(); 404 for (int i = 1; i < G2.length; i++) { 405 G2[i] = G[i].rotate(-beta); 406 } 407 408 return new FourierDescriptor(G2, this.scale); 409 } 410 411 // ----------------------------------------------------------------- 412 413 /** 414 * Returns a new translation invariant Fourier descriptor by setting coefficient 0 to zero. The original Fourier 415 * descriptor is not modified. This method is not used for shape invariance calculation, since position is not 416 * shape-relevant. 417 * 418 * @return a new translation-normalized Fourier descriptor 419 */ 420 public FourierDescriptor makeTranslationInvariant() { 421 Complex[] G2 = G.clone(); 422 G2[0] = Complex.ZERO; 423 return new FourierDescriptor(G2, this.scale); 424 } 425 426 // ------------------------------------------------------------------ 427 // Reconstruction-related methods: 428 // ------------------------------------------------------------------ 429 430 /** 431 * Reconstructs the associated 2D shape (closed contour) with N sample points, using all of the Fourier descriptor's 432 * coefficient pairs. The result is returned as an array of {@link Complex} values. 433 * 434 * @param n number of shape points 435 * @return reconstructed shape points 436 */ 437 public Complex[] getShapeFull(int n) { 438 return getShapePartial(n, mp); 439 } 440 441 /** 442 * Reconstructs the associated 2D shape (closed contour) with N sample points, using only a subset of the Fourier 443 * descriptor's coefficient pairs. The result is returned as an array of {@link Complex} values. 444 * 445 * @param n number of shape points 446 * @param p the number of (low frequency) coefficient pairs to be used 447 * @return the reconstructed shape points 448 */ 449 public Complex[] getShapePartial(int n, int p) { 450 p = Math.min(p, this.mp); 451 Complex[] S = new Complex[n]; 452 for (int i = 0; i < n; i++) { 453 double t = (double) i / n; 454 S[i] = getShapePointPartial(p, t); 455 } 456 return S; 457 } 458 459 /** 460 * Reconstructs a single space point of the associated shape (closed contour) at the fractional path position t 461 * ∈ [0,1], using all of the Fourier descriptor's coefficient pairs. 462 * 463 * @param t path position 464 * @return the reconstructed shape point 465 */ 466 public Complex getShapePointFull(double t) { 467 return getShapePointPartial(mp, t); 468 } 469 470 /** 471 * Reconstructs a single space point of the associated shape (closed contour) at the fractional path position t 472 * ∈ [0,1], using only a subset of the Fourier descriptor's coefficient pairs. 473 * 474 * @param p the number of (low frequency) coefficient pairs to be used 475 * @param t path position ∈ [0,1] 476 * @return the reconstructed shape point 477 */ 478 public Complex getShapePointPartial(int p, double t) { 479 p = Math.min(p, mp); 480 double x = G[0].re; 481 double y = G[0].im; 482 for (int m = -p; m <= +p; m++) { 483 if (m != 0) { 484 Complex Gm = getCoefficient(m); 485 double A = scale * Gm.re; 486 double B = scale * Gm.im; 487 double phi = 2 * Math.PI * m * t; 488 double sinPhi = Math.sin(phi); 489 double cosPhi = Math.cos(phi); 490 x = x + A * cosPhi - B * sinPhi; 491 y = y + A * sinPhi + B * cosPhi; 492 } 493 } 494 return new Complex(x, y); 495 } 496 497 /** 498 * Reconstructs the associated 2D shape (closed contour) with N sample points, using only a single coefficient 499 * pairs. The result is returned as an array of {@link Complex} values. 500 * 501 * @param n number of shape points 502 * @param m the frequency index of the coefficient pair 503 * @return the reconstructed shape points 504 */ 505 public Complex[] getShapePair(int n, int m) { 506 m = Math.min(m, this.mp); 507 Complex[] S = new Complex[n]; 508 for (int i = 0; i < n; i++) { 509 double t = (double) i / n; 510 S[i] = getShapePointPair(m, t); 511 } 512 return S; 513 } 514 515 /** 516 * Returns the spatial point reconstructed from a single DFT coefficient pair G[-m], G[+m] at position t ∈ 517 * [0,1]. Varying t creates points on an ellipse. 518 * 519 * @param m frequency index (coefficient pair number) 520 * @param t contour position ∈ [0,1] 521 * @return reconstructed shape point 522 */ 523 public Complex getShapePointPair(int m, double t) { 524 Complex p1 = getShapePointSingle(-m, t); 525 Complex p2 = getShapePointSingle(+m, t); 526 return p1.add(p2); 527 } 528 529 530 /** 531 * Returns the spatial point reconstructed from a single DFT coefficient G[m] with frequency index m at position t 532 * ∈ [0,1]. Varying t creates points on a circle. 533 * 534 * @param m frequency index (pos/neg, 0 ≤ m ≤ this.mp) 535 * @param t contour position ∈ [0,1] 536 * @return reconstructed shape point 537 */ 538 private Complex getShapePointSingle(int m, double t) { 539 Complex Gm = getCoefficient(m); 540 double wm = 2 * Math.PI * m; 541 double Am = Gm.re; 542 double Bm = Gm.im; 543 double cost = Math.cos(wm * t); 544 double sint = Math.sin(wm * t); 545 double xt = Am * cost - Bm * sint; 546 double yt = Bm * cost + Am * sint; 547 return new Complex(xt, yt); 548 } 549 550 /** 551 * <p> 552 * Returns the parameters of the geometric ellipse associated with a single Fourier coefficient pair (G[-m], G[+m]). 553 * See Sec. 26.3.5 of [1] for details. The result is in the form (ra, rb, xc, yc, theta). 554 * </p> 555 * <p> 556 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction Using Java</em>, 2nd 557 * ed, Springer (2016). 558 * </p> 559 * 560 * @param m the frequency index of the Fourier coefficient pair 561 * @return the ellipse parameters (ra, rb, xc, yc, theta) 562 */ 563 public double[] getEllipseParameters(int m) { 564 Complex Gmm = getCoefficient(-m); 565 Complex Gpm = getCoefficient(+m); 566 // see [1], Eqns. (26.50 - 52): 567 double ra = Gmm.abs() + Gpm.abs(); // = a_m 568 double rb = Math.abs(Gmm.abs() - Gpm.abs()); // = b_m 569 double theta = 0.5 * (Gmm.arg() + Gpm.arg()); // = alpha_m 570 571 return new double[] {ra, rb, 0, 0, theta}; 572 } 573 574 /** 575 * <p> 576 * Returns the ellipse associated with a single Fourier coefficient pair (G[-m], G[+m]) as a (AWT) {@link Shape} 577 * object. The resulting ellipse is centered at (0,0). {@link AffineTransform} may be used to shift the ellipse to 578 * any other position. 579 * </p> 580 * 581 * @param m the frequency index of the Fourier coefficient pair 582 * @return the ellipse ({@link Shape}) 583 * @see #getEllipseParameters(int) 584 */ 585 public Shape getEllipse(int m) { 586 double[] ep = this.getEllipseParameters(m); // = (ra, rb, 0, 0, theta) 587 double ra = ep[0]; 588 double rb = ep[1]; 589 double theta = ep[4]; 590 AffineTransform rot = AffineTransform.getRotateInstance(theta); 591 return rot.createTransformedShape(new Ellipse2D.Double(-ra, -rb, 2 * ra, 2 * rb)); 592 } 593 594 595 // ------------------------------------------------------------------ 596 // Distance methods for matching Fourier descriptors: 597 // ------------------------------------------------------------------ 598 599 /** 600 * Returns a L2-type distance between this and another {@link FourierDescriptor} instance comparing the real and 601 * imaginary parts of all coefficient pairs. The zero-frequency coefficients are ignored. 602 * 603 * @param fd2 another Fourier descriptor 604 * @return the resulting distance 605 */ 606 public double distanceComplex(FourierDescriptor fd2) { 607 return distanceComplex(fd2, mp); 608 } 609 610 /** 611 * Returns a L2-type distance between this and another {@link FourierDescriptor} instance comparing the real and 612 * imaginary parts of a limited range of (low-frequency) coefficient pairs. The zero-frequency coefficients are 613 * ignored. 614 * 615 * @param fd2 another Fourier descriptor 616 * @param p the number of (low-frequency) coefficient pairs to evaluate 617 * @return the resulting distance 618 */ 619 public double distanceComplex(FourierDescriptor fd2, final int p) { 620 if (this.mp < p || fd2.mp < p) { 621 throw new IllegalArgumentException("insufficient number of Fourier coefficients"); 622 } 623 FourierDescriptor fd1 = this; 624 double sum = 0; 625 for (int m = -p; m <= p; m++) { 626 if (m != 0) { 627 Complex G1m = fd1.getCoefficient(m); 628 Complex G2m = fd2.getCoefficient(m); 629 sum = sum + sqr(G1m.re - G2m.re) + sqr(G1m.im - G2m.im); 630 } 631 } 632 return Math.sqrt(sum); 633 } 634 635 /** 636 * Returns a L2-type distance between this and another {@link FourierDescriptor} instance comparing the magnitudes 637 * of all coefficient pairs. The zero-frequency coefficients are ignored. 638 * 639 * @param fd2 another Fourier descriptor 640 * @return the resulting distance 641 */ 642 public double distanceMagnitude(FourierDescriptor fd2) { 643 return distanceMagnitude(fd2, mp); 644 } 645 646 /** 647 * Returns a L2-type distance between this and another {@link FourierDescriptor} instance comparing the magnitudes 648 * of a limited range of (low-frequency) coefficient pairs. The zero-frequency coefficients are ignored. 649 * 650 * @param fd2 another Fourier descriptor 651 * @param p the number of (low-frequency) coefficient pairs to evaluate 652 * @return the resulting distance 653 */ 654 public double distanceMagnitude(FourierDescriptor fd2, final int p) { 655 if (this.mp < p || fd2.mp < p) { 656 throw new IllegalArgumentException("insufficient number of Fourier coefficients"); 657 } 658 FourierDescriptor fd1 = this; 659 double sum = 0; 660 for (int m = -p; m <= p; m++) { 661 if (m != 0) { 662 double mag1 = fd1.getCoefficient(m).abs(); 663 double mag2 = fd2.getCoefficient(m).abs(); 664 sum = sum + sqr(mag2 - mag1); 665 } 666 } 667 return Math.sqrt(sum); 668 } 669 670 // --------------------------------------------------------------------- 671 672 @Override 673 public String toString() { 674 return String.format(Locale.US, "%s: mp=%d scale=%.3f", this.getClass().getSimpleName(), mp, scale); 675 } 676 677 // moved from Utils ------------------------------------ 678 679 public static Path2D toPath(Complex[] C) { 680 Path2D path = new Path2D.Float(); 681 path.moveTo(C[0].re, C[0].im); 682 for (int i = 1; i < C.length; i++) { 683 path.lineTo(C[i].re, C[i].im); 684 } 685 path.closePath(); 686 return path; 687 } 688 689 public static Complex[] toComplexArray(Pnt2d[] points) { 690 int N = points.length; 691 Complex[] samples = new Complex[N]; 692 for (int i = 0; i < N; i++) { 693 samples[i] = new Complex(points[i].getX(), points[i].getY()); 694 } 695 return samples; 696 } 697 698 // ----------------------------------------------------------------- 699 // ----------------------------------------------------------------- 700 701// /** 702// * For testing: apply shape rotation to this FourierDescriptor (phi in radians) 703// * 704// * @param phi rotation angle 705// */ 706// public void rotate(double phi) { 707// rotate(G, phi); 708// } 709 710// /** 711// * For testing: apply shape rotation to this FourierDescriptor (phi in radians) 712// * 713// * @param shape complex point 714// * @param phi angle 715// */ 716// public static Complex[] rotateShape(Complex[] shapeOrig, double phi) { 717// Complex[] shape = shapeOrig.clone(); 718// Complex rot = new Complex(phi); 719// for (int m = 0; m < shape.length; m++) { 720// shape[m] = shape[m].multiply(rot); 721// } 722// return shape; 723// } 724 725// public static Complex[] scaleShape(Complex[] shapeOrig, double scale) { 726// Complex[] shape = shapeOrig.clone(); 727// for (int m = 1; m < shape.length; m++) { 728// shape[m] = shape[m].multiply(rot); 729// } 730// return shape; 731// } 732 733// /** 734// * Apply a particular start-point phase shift 735// * 736// * @param phi start point phase 737// * @param mp most positive/negative frequency index 738// */ 739// private void shiftStartPointPhase(double phi) { 740// for (int m = -mp; m <= mp; m++) { 741// if (m != 0) { 742// setCoefficient(m, getCoefficient(m).rotate(m * phi)); 743// } 744// } 745// } 746 747}