001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.ellipse.project; 010 011import imagingbook.common.geometry.ellipse.GeometricEllipse; 012 013import static imagingbook.common.math.Arithmetic.sqr; 014import static java.lang.Math.abs; 015import static java.lang.Math.max; 016import static java.lang.Math.pow; 017 018/** 019 * <p> 020 * Calculates the closest point on the ellipse for a given 2D point inside or outside the ellipse, using orthogonal 021 * projection of points onto the ellipse. This is a robust algorithm based on [1]. See Sec.11.2.2 (Alg. 11.9) of [2] for 022 * details. This version uses the Newton-method for root finding, which is quick but may fail to return a valid result 023 * if the target point is close to the x- or y-axis. See {@link OrthogonalEllipseProjector} for a robust solution or 024 * {@link ConfocalConicEllipseProjector} for an approximate but non-iterative (i.e., fast) alternative. 025 * </p> 026 * <p> 027 * [1] D. Eberly: "Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid", Technical Report, Geometric 028 * Tools, www.geometrictools.com, Redmont, WA (June 2013). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing 029 * – An Algorithmic Introduction</em>, 3rd ed, Springer (2022). 030 * </p> 031 * 032 * @author WB 033 * @version 2022/04/09 034 * @see OrthogonalEllipseProjector 035 * @see ConfocalConicEllipseProjector 036 */ 037public class OrthogonalEllipseProjectorNewton extends EllipseProjector { 038 039 private final static double NewtonMinStep = 1e-6; 040 private final static int MaxIterations = 100; 041 042 private final double ra, rb, ra2, rb2; 043 private int lastIterationCount = 0; // number of root-finding iterations performed in last projection 044 045 public OrthogonalEllipseProjectorNewton(GeometricEllipse ellipse) { 046 super(ellipse); 047 this.ra = ellipse.ra; 048 this.rb = ellipse.rb; 049 this.ra2 = sqr(ra); 050 this.rb2 = sqr(rb); 051 } 052 053 @Override 054 protected double[] projectCanonical(double[] u1) { 055 // coordinates of p (mapped to first quadrant) 056 final double u = u1[0]; 057 final double v = u1[1]; 058 059 double[] ub = null; // the unknown ellipse point 060 061 if (u + v < 1e-6) { // (u,v) is very close to the ellipse center; u,v >= 0 062 ub = new double[] {0, rb}; 063 } 064 else { 065 double t = max(ra * u - ra2, rb * v - rb2); 066 double gprev = Double.POSITIVE_INFINITY; 067 double deltaT, deltaG; 068 int k = 0; 069 do { 070 k = k + 1; 071 double g = sqr((ra * u) / (t + ra2)) + sqr((rb * v) / (t + rb2)) - 1; 072 double dg = 2 * (sqr(ra * u) / pow(t + ra2, 3) + sqr(rb * v) / pow(t + rb2, 3)); 073 deltaT = g / dg; 074 t = t + deltaT; // Newton iteration 075 076 // in rare cases g(t) is very flat and checking deltaT is not enough for convergence! 077 deltaG = g - gprev; // change of g value 078 gprev = g; 079 080 } while(abs(deltaT) > NewtonMinStep && abs(deltaG) > NewtonMinStep && k < MaxIterations); 081 082 lastIterationCount = k; // remember iteration count 083 084 if (k >= MaxIterations) { 085 throw new RuntimeException("max. mumber of iterations exceeded"); 086 } 087 088 ub = new double[] {ra2 * u / (t + ra2), rb2 * v / (t + rb2)}; 089 } 090 return ub; 091 } 092 093 // for statistics only 094 095 public int getLastIterationCount() { 096 return this.lastIterationCount; 097 } 098 099}