001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.ellipse.project; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.ellipse.GeometricEllipse; 013 014import static imagingbook.common.math.Arithmetic.sqr; 015import static imagingbook.common.math.Matrix.add; 016import static imagingbook.common.math.Matrix.multiply; 017import static imagingbook.common.math.Matrix.subtract; 018import static imagingbook.common.math.Matrix.transpose; 019import static java.lang.Math.abs; 020import static java.lang.Math.copySign; 021import static java.lang.Math.cos; 022import static java.lang.Math.sin; 023 024/** 025 * <p> 026 * Abstract superclass for ellipse projectors, used to find the closest "contact" point on an ellipse for some given 027 * target point. Defines specific methods for calculating minimum distance only, i.e., without returning the closest 028 * point itself. All calculations are performed in a "canonical" coordinate frame, with the ellipse centered at the 029 * origin and its major axis aligned to the x-axis. See Sec. 11.2.2 (Fig. 11.7) of [1] for details. 030 * </p> 031 * <p> 032 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 033 * (2022). 034 * </p> 035 * 036 * @author WB 037 * @version 2022/11/17 038 */ 039public abstract class EllipseProjector { 040 041 private final double[] xc; 042 private final double[][] R, Rt; // rotation matrix 043 044 protected EllipseProjector(GeometricEllipse ellipse) { 045 this.xc = new double[] {ellipse.xc, ellipse.yc}; 046 this.R = new double[][] 047 {{ cos(ellipse.theta), -sin(ellipse.theta) }, 048 { sin(ellipse.theta), cos(ellipse.theta) }}; 049 this.Rt = transpose(R); 050 } 051 052 // methods to be implemented by subclasses ---------------------------- 053 054 /** 055 * Calculates the projection point in canonical coordinates. 056 * 057 * @param u1 target point in canonical coordinates. 058 * @return the associated "contact" point on the ellipse 059 */ 060 protected abstract double[] projectCanonical(double[] u1); 061 062 // ------------------------------------------------------------------- 063 064 /** 065 * Projects the specified point onto the associated ellipse. 066 * 067 * @param x the 2D point to be projected 068 * @return the closest point on the ellipse 069 */ 070 public double[] project(double[] x) { 071 double[] u = toCanonicalFrame(x); // target point in u/v coordinates 072 double[] u1 = toFirstQuadrant(u); // target point in quadrant 1 073 double[] ub1 = projectCanonical(u1); // contact point in quadrant 1 074 double[] ub = fromFirstQuadrant(ub1, u); // contact point in u/v coordinates 075 return this.fromCanonicalFrame(ub); // contact point in x/y coordinates 076 } 077 078 /** 079 * Projects the specified point onto the associated ellipse. 080 * 081 * @param pnt the 2D point to be projected 082 * @return the closest point on the ellipse 083 */ 084 public Pnt2d project(Pnt2d pnt) { 085 return Pnt2d.from(project(pnt.toDoubleArray())); 086 } 087 088 /** 089 * Calculates the distance to the closest ellipse point (but not the point itself). 090 * 091 * @param x the 2D point to be projected 092 * @return the distance to the closest ellipse point 093 */ 094 public double getDistance(double[] x) { 095 return Math.sqrt(getDistanceSq(x)); // d = ||u1 - ub1|| 096 } 097 098 public double getDistanceSq(double[] x) { 099 double[] u = toCanonicalFrame(x); // target point in u/v coordinates 100 double[] u1 = toFirstQuadrant(u); // target point in quadrant 1 101 double[] ub1 = projectCanonical(u1); // contact point in quadrant 1 102 return sqr(u1[0] - ub1[0]) + sqr(u1[1] - ub1[1]); // = ||u1 - ub1||^2 103// return Matrix.normL2squared(Matrix.subtract(u1, ub1)); 104 } 105 106 // internal methods projecting points to/from canonical coordinates: 107 108 protected double[] toCanonicalFrame(double[] xy) { 109 return multiply(Rt, subtract(xy, xc)); // point in canonical coordinates 110 } 111 112 protected double[] fromCanonicalFrame(double[] uv) { 113 return add(multiply(R, uv), xc); 114 } 115 116 protected double[] toFirstQuadrant(double[] uv) { 117 return new double[] {abs(uv[0]), abs(uv[1])}; 118 } 119 120 protected double[] fromFirstQuadrant(double[] uv, double[] uvOrig) { 121 return new double[] {copySign(uv[0], uvOrig[0]), copySign(uv[1], uvOrig[1])}; 122 } 123 124}