001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.ellipse.project;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.ellipse.GeometricEllipse;
013
014import static imagingbook.common.math.Arithmetic.sqr;
015import static imagingbook.common.math.Matrix.add;
016import static imagingbook.common.math.Matrix.multiply;
017import static imagingbook.common.math.Matrix.subtract;
018import static imagingbook.common.math.Matrix.transpose;
019import static java.lang.Math.abs;
020import static java.lang.Math.copySign;
021import static java.lang.Math.cos;
022import static java.lang.Math.sin;
023
024/**
025 * <p>
026 * Abstract superclass for ellipse projectors, used to find the closest "contact" point on an ellipse for some given
027 * target point. Defines specific methods for calculating minimum distance only, i.e., without returning the closest
028 * point itself. All calculations are performed in a "canonical" coordinate frame, with the ellipse centered at the
029 * origin and its major axis aligned to the x-axis. See Sec. 11.2.2 (Fig. 11.7) of [1] for details.
030 * </p>
031 * <p>
032 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
033 * (2022).
034 * </p>
035 *
036 * @author WB
037 * @version 2022/11/17
038 */
039public abstract class EllipseProjector {
040        
041        private final double[] xc;
042        private final double[][] R, Rt;                 // rotation matrix
043        
044        protected EllipseProjector(GeometricEllipse ellipse) {
045                this.xc = new double[] {ellipse.xc, ellipse.yc};
046                this.R = new double[][]
047                                {{ cos(ellipse.theta), -sin(ellipse.theta) }, 
048                                 { sin(ellipse.theta),  cos(ellipse.theta) }};
049                this.Rt = transpose(R);
050        }
051        
052        // methods to be implemented by subclasses ----------------------------
053        
054        /**
055         * Calculates the projection point in canonical coordinates.
056         * 
057         * @param u1 target point in canonical coordinates.
058         * @return the associated "contact" point on the ellipse
059         */
060        protected abstract double[] projectCanonical(double[] u1);
061        
062        // -------------------------------------------------------------------
063        
064        /**
065         * Projects the specified point onto the associated ellipse.
066         * 
067         * @param x the 2D point to be projected
068         * @return the closest point on the ellipse
069         */
070        public double[] project(double[] x) {
071                double[] u = toCanonicalFrame(x);                                       // target point in u/v coordinates
072                double[] u1 = toFirstQuadrant(u);                                       // target point in quadrant 1
073                double[] ub1 = projectCanonical(u1);                            // contact point in quadrant 1
074                double[] ub = fromFirstQuadrant(ub1, u);                        // contact point in u/v coordinates
075                return this.fromCanonicalFrame(ub);                                     // contact point in x/y coordinates
076        }
077        
078        /**
079         * Projects the specified point onto the associated ellipse.
080         * 
081         * @param pnt the 2D point to be projected
082         * @return the closest point on the ellipse
083         */
084        public Pnt2d project(Pnt2d pnt) {
085                return Pnt2d.from(project(pnt.toDoubleArray()));
086        }
087
088        /**
089         * Calculates the distance to the closest ellipse point (but not the point itself).
090         *
091         * @param x the 2D point to be projected
092         * @return the distance to the closest ellipse point
093         */
094        public double getDistance(double[] x) {
095                return Math.sqrt(getDistanceSq(x));                     // d = ||u1 - ub1||
096        }
097        
098        public double getDistanceSq(double[] x) {
099                double[] u = toCanonicalFrame(x);                                       // target point in u/v coordinates
100                double[] u1 = toFirstQuadrant(u);                                       // target point in quadrant 1
101                double[] ub1 = projectCanonical(u1);                            // contact point in quadrant 1
102                return sqr(u1[0] - ub1[0]) + sqr(u1[1] - ub1[1]);       // = ||u1 - ub1||^2
103//              return Matrix.normL2squared(Matrix.subtract(u1, ub1));
104        }       
105
106        // internal methods projecting points to/from canonical coordinates:
107        
108        protected double[] toCanonicalFrame(double[] xy) {
109                return multiply(Rt, subtract(xy, xc)); // point in canonical coordinates
110        }
111        
112        protected double[] fromCanonicalFrame(double[] uv) {
113                return add(multiply(R, uv), xc);
114        }
115        
116        protected double[] toFirstQuadrant(double[] uv) {
117                return new double[] {abs(uv[0]), abs(uv[1])};
118        }
119        
120        protected double[] fromFirstQuadrant(double[] uv, double[] uvOrig) {
121                return new double[] {copySign(uv[0], uvOrig[0]), copySign(uv[1], uvOrig[1])};
122        }
123
124}