001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.ellipse.project; 010 011import imagingbook.common.geometry.ellipse.GeometricEllipse; 012 013import static imagingbook.common.math.Arithmetic.sqr; 014import static java.lang.Math.sqrt; 015 016/** 017 * <p> 018 * Calculates an approximate closest point on the ellipse for a given 2D point inside or outside the ellipse, using 019 * "confocal conic distance approximation" [1]. See Sec. 11.2.3 (Alg. 11.12) and Appendix F.3.1 of [2] for details. 020 * </p> 021 * <p> 022 * [1] P. L. Rosin. Ellipse fitting using orthogonal hyperbolae and stirling’s oval. Graphical Models and Image 023 * Processing 60(3), 209–213 (1998). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic 024 * Introduction</em>, 3rd ed, Springer (2022). 025 * </p> 026 * 027 * @author WB 028 * @version 2022/11/17 029 */ 030public class ConfocalConicEllipseProjector extends EllipseProjector { 031 032 private final double ra, rb, ra2, rb2; 033 034 public ConfocalConicEllipseProjector(GeometricEllipse ellipse) { 035 super(ellipse); 036 this.ra = ellipse.ra; 037 this.rb = ellipse.rb; 038 this.ra2 = sqr(ra); 039 this.rb2 = sqr(rb); 040 } 041 042 // ellipse projection in quadrant 1 of u/v space 043 @Override 044 protected double[] projectCanonical(double[] uv) { 045 // uv is supposed to be in quadrant 1 of canonical frame 046 double u = uv[0]; 047 double v = uv[1]; 048 double u2 = sqr(u); 049 double v2 = sqr(v); 050 double fe2 = ra2 - rb2; 051 double b = (u2 + v2 + fe2); 052 double sa2 = 0.5 * (b - sqrt(sqr(b) - 4 * u2 * fe2)); 053 double sb2 = fe2 - sa2; 054 double c = 1 / sqrt(ra2 * sb2 + rb2 * sa2); 055 return new double[] {c * ra * sqrt(sa2 * (rb2 + sb2)), c * rb * sqrt(sb2 * (ra2 - sa2))}; 056 } 057 058}