001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.ellipse.project;
010
011import imagingbook.common.geometry.ellipse.GeometricEllipse;
012
013import static imagingbook.common.math.Arithmetic.sqr;
014import static java.lang.Math.sqrt;
015
016/**
017 * <p>
018 * Calculates an approximate closest point on the ellipse for a given 2D point inside or outside the ellipse, using
019 * "confocal conic distance approximation" [1]. See Sec. 11.2.3 (Alg. 11.12) and Appendix F.3.1 of [2] for details.
020 * </p>
021 * <p>
022 * [1] P. L. Rosin. Ellipse fitting using orthogonal hyperbolae and stirling’s oval. Graphical Models and Image
023 * Processing 60(3), 209–213 (1998). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic
024 * Introduction</em>, 3rd ed, Springer (2022).
025 * </p>
026 *
027 * @author WB
028 * @version 2022/11/17
029 */
030public class ConfocalConicEllipseProjector extends EllipseProjector {
031        
032        private final double ra, rb, ra2, rb2;
033        
034        public ConfocalConicEllipseProjector(GeometricEllipse ellipse) {
035                super(ellipse);
036                this.ra = ellipse.ra;
037                this.rb = ellipse.rb;
038                this.ra2 = sqr(ra);
039                this.rb2 = sqr(rb);
040        }
041        
042        // ellipse projection in quadrant 1 of u/v space
043        @Override
044        protected double[] projectCanonical(double[] uv) {
045                // uv is supposed to be in quadrant 1 of canonical frame
046                double u = uv[0];
047                double v = uv[1];
048                double u2 = sqr(u);
049                double v2 = sqr(v);
050                double fe2 = ra2 - rb2;
051                double b = (u2 + v2 + fe2);
052                double sa2 = 0.5 * (b - sqrt(sqr(b) - 4 * u2 * fe2));
053                double sb2 = fe2 - sa2; 
054                double c = 1 / sqrt(ra2 * sb2 + rb2 * sa2);     
055                return new double[] {c * ra * sqrt(sa2 * (rb2 + sb2)), c * rb * sqrt(sb2 * (ra2 - sa2))};
056        }
057        
058}