001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.ellipse;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.Primitive2d;
013import imagingbook.common.geometry.ellipse.project.OrthogonalEllipseProjector;
014import imagingbook.common.geometry.shape.ShapeProducer;
015import imagingbook.common.math.Arithmetic;
016
017import java.awt.Shape;
018import java.awt.geom.AffineTransform;
019import java.awt.geom.Ellipse2D;
020import java.awt.geom.Path2D;
021import java.util.Locale;
022
023import static imagingbook.common.math.Arithmetic.sqr;
024import static java.lang.Math.PI;
025import static java.lang.Math.cos;
026import static java.lang.Math.sin;
027import static java.lang.Math.sqrt;
028
029/**
030 * <p>
031 * Represents an ellipse with major axis length ra, minor axis length rb, center point (xc, yc), and orientation theta.
032 * Instances are immutable. See Secs. 11.2.2 and F.3.1 for details.
033 * </p>
034 * <p>
035 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
036 * (2022).
037 * </p>
038 *
039 * @author WB
040 * @version 2022/11/17
041 */
042public class GeometricEllipse implements ShapeProducer, Primitive2d {
043        
044        /**
045         * Ellipse parameters.
046         */
047        public final double ra, rb, xc, yc, theta;
048        private final OrthogonalEllipseProjector projector;
049
050        /**
051         * Constructor. Axis lengths may be exchanged to ensure ra &ge; rb.
052         *
053         * @param ra major axis length
054         * @param rb minor axis length
055         * @param xc center point (x)
056         * @param yc center point (y)
057         * @param theta orientation
058         */
059        public GeometricEllipse(double ra, double rb, double xc, double yc, double theta) {
060                this.xc = xc;
061                this.yc = yc;
062                if (ra >= rb) { // make sure ra is always the longer axis!
063                        this.ra = ra;
064                        this.rb = rb;
065                        this.theta = Arithmetic.mod(theta, PI); // theta = 0,...,pi always
066                }
067                else {
068                        this.ra = rb; // swap ra/rb
069                        this.rb = ra;
070                        this.theta = Arithmetic.mod(theta + PI/2, PI);  // theta = 0,...,pi always
071                }
072                this.projector = new OrthogonalEllipseProjector(this);
073                
074                if (this.ra < this.rb) {
075                        throw new RuntimeException(this.toString());
076                }
077        }
078
079        /**
080         * Constructor, short version for axis-aligned ellipses. Axis lengths may be exchanged to ensure ra &ge; rb.
081         *
082         * @param ra major axis length
083         * @param rb minor axis length
084         * @param xc center point (x)
085         * @param yc center point (y)
086         */
087        public GeometricEllipse(double ra, double rb, double xc, double yc) {
088                this(ra, rb, xc, yc, 0.0);
089        }
090
091        /**
092         * Constructor.
093         *
094         * @param p parameter vector [ra, rb, xc, yc, theta].
095         * @see #getParameters()
096         */
097        public GeometricEllipse(double[] p) {
098                this(p[0], p[1], p[2], p[3], p[4]);
099        }
100
101        /**
102         * Constructor. Creates a new {@link GeometricEllipse} from a {@link AlgebraicEllipse} instance.
103         *
104         * @param ae a {@link AlgebraicEllipse} instance
105         */
106        public GeometricEllipse(AlgebraicEllipse ae) {
107                this(getGeometricEllipseParameters(ae));
108        }
109
110        /**
111         * Calculates and returns the geometric ellipse parameters from a given algebraic ellipse (see Eqns. 19-23 at
112         * <a href="http://mathworld.wolfram.com/Ellipse.html">http://mathworld.wolfram.com/Ellipse.html</a>).
113         *
114         * @param ae a {@linkplain AlgebraicEllipse} instance with parameters (A,...,F)
115         * @return the geometric ellipse parameters (ra, rb, xc, yc, theta)
116         * @see AlgebraicEllipse
117         */
118        public static double[] getGeometricEllipseParameters(AlgebraicEllipse ae) {
119                // see Eq. 19-23 at http://mathworld.wolfram.com/Ellipse.html
120                double[] params = ae.getParameters(); 
121                final double A = params[0]; // ae.A;
122                final double B = params[1]; // ae.B;
123                final double C = params[2]; // ae.C;
124                final double D = params[3]; // ae.D;
125                final double E = params[4]; // ae.E;
126                final double F = params[5]; // ae.F;            
127                final double d = sqr(B) - 4*A*C;
128                
129                if (d >= 0) {
130                        throw new IllegalArgumentException("B^2 - 4AC must be negative for an ellipse");
131                }
132
133                final double q = sqrt(sqr(A-C) + sqr(B));
134                final double s = 2*(A*sqr(E) + C*sqr(D) + F*sqr(B) - B*D*E - 4*A*C*F);
135                
136                double xc = (2 * C * D - B * E) / d;
137                double yc = (2 * A * E - B * D) / d;
138                double ra = sqrt(s / (d * (-A - C + q)));
139                double rb = sqrt(s / (d * (-A - C - q)));
140                double theta = 0.5 * Math.atan2(-B, C - A); // theta = -pi/2,...,+pi/2
141                
142                return (ra >= rb) ? // make sure ra >= rb (ra is the major axis)
143                        new double[] {ra, rb, xc, yc, theta} :
144                        new double[] {rb, ra, xc, yc, theta + PI/2} ;
145        }
146        
147        // ---------------------------------------
148
149        /**
150         * Returns a vector of parameters for this ellipse. The length of the vector and the meaning of the parameters
151         * depends on the concrete ellipse type.
152         *
153         * @return a vector of parameters [ra, rb, xc, yc, theta]
154         */
155        public double[] getParameters() {
156                return new double[] {ra, rb, xc, yc, theta};
157        }
158        
159        public Pnt2d getCenter() {
160                return Pnt2d.from(xc, yc);
161        }
162        
163        public double getArea() {
164                return this.ra * this.rb * Math.PI;
165        }
166        
167        public double getAlgebraicDistance(Pnt2d p) {
168                return new AlgebraicEllipse(this).getAlgebraicDistance(p);
169        }
170
171        /**
172         * Returns the ellipse point closest to the specified point. To perform this calculation for multiple points on the
173         * same ellipse use {@link OrthogonalEllipseProjector}.
174         *
175         * @param pnt some 2D point
176         * @return the closest ("contact") point on the ellipse
177         * @see OrthogonalEllipseProjector
178         */
179        public Pnt2d getClosestPoint(Pnt2d pnt) {
180                return projector.project(pnt);
181        }
182        
183        public double[] getClosestPoint(double[] pnt) {
184                return projector.project(pnt);
185        }
186        
187        // ---------------------------------------------------------------------------------
188
189        /**
190         * Returns the mean squared error between this ellipse and a set of 2D points.
191         *
192         * @param points a set of sample points (usually the points used for fitting)
193         * @return the mean squared error
194         */
195        public double getMeanSquareError(Pnt2d[] points) {
196                double sum2 = 0;
197                for (Pnt2d p : points) {
198                        sum2 = sum2 + p.distanceSq(getClosestPoint(p));
199                }
200                return sum2 / points.length;
201        }
202
203        /**
204         * Returns the closest (geometric) distance of the specified point to this ellipse.
205         *
206         * @param p some 2D point
207         * @return the distance to the closest point on the ellipse
208         */
209        @Override
210        public double getDistance(Pnt2d p) {
211                return p.distance(getClosestPoint(p));
212        }
213        
214        // ------------------------------------------------------------------------------------------
215        
216        @Override
217        public Shape getShape(double scale) {
218                return this.getOuterShape();
219        }
220        
221        @Override
222        public Shape[] getShapes(double scale) {
223                return new Shape[] {
224                                getOuterShape(),
225                                getCenterShape(scale),
226                                getAxisShape()
227                };
228        }
229        
230        private Shape getOuterShape() {
231                Ellipse2D oval = new Ellipse2D.Double(-ra, -rb, 2 * ra, 2 * rb);
232                AffineTransform trans = new AffineTransform();
233                trans.translate(xc, yc);
234                trans.rotate(theta);
235                return trans.createTransformedShape(oval);
236        }
237        
238        private Shape getCenterShape(double radius) {
239                double dxa = 2 * radius * cos(theta);   // major axis is drawn longer
240                double dya = 2 * radius * sin(theta);
241                double dxb = 1 * radius * cos(theta + PI/2);
242                double dyb = 1 * radius * sin(theta + PI/2);
243                Path2D path = new Path2D.Double();
244                path.moveTo(xc - dxa, yc - dya);
245                path.lineTo(xc + dxa, yc + dya);
246                path.moveTo(xc - dxb, yc - dyb);
247                path.lineTo(xc + dxb, yc + dyb);
248                return path;
249        }
250        
251        private Shape getAxisShape() {
252                double dxa = ra * cos(theta);
253                double dya = ra * sin(theta);
254                double dxb = rb * cos(theta + PI/2);
255                double dyb = rb * sin(theta + PI/2);
256                Path2D path = new Path2D.Double();
257                path.moveTo(xc - dxa, yc - dya);
258                path.lineTo(xc + dxa, yc + dya);
259                path.moveTo(xc - dxb, yc - dyb);
260                path.lineTo(xc + dxb, yc + dyb);
261                return path;
262        }
263        
264        @Deprecated             // used for book figures only
265        public Pnt2d getLeftAxisPoint() {
266                return Pnt2d.from(xc - ra * cos(theta), yc - ra * sin(theta));
267        }
268        
269        // -------------------------------
270        
271        public GeometricEllipse duplicate() {
272                return new GeometricEllipse(this.getParameters());
273        }
274        
275        @Override
276        public boolean equals(Object other) {
277                if (this == other) {
278                        return true;
279                }
280                if (!(other instanceof GeometricEllipse)) {
281            return false;
282        }
283                return this.equals((GeometricEllipse) other, Arithmetic.EPSILON_DOUBLE);
284        }
285        
286        public boolean equals(GeometricEllipse other, double tolerance) {
287                return 
288                                Arithmetic.equals(xc, other.xc, tolerance) &&
289                                Arithmetic.equals(yc, other.yc, tolerance) &&
290                                Arithmetic.equals(ra, other.ra, tolerance) &&
291                                Arithmetic.equals(rb, other.rb, tolerance) &&
292                                Arithmetic.equals(Math.cos(theta), Math.cos(other.theta), tolerance) &&
293                                Arithmetic.equals(Math.sin(theta), Math.sin(other.theta), tolerance) ;
294        }
295        
296        @Override
297        public String toString() {
298                return String.format(Locale.US, "%s [ra=%.8f, rb=%.8f, xc=%.8f, yc=%.8f, theta=%.8f]", 
299                                this.getClass().getSimpleName(), ra, rb, xc, yc, theta);
300        }
301
302}