001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.geometry.delaunay.guibas; 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.delaunay.DelaunayTriangulation; 014import imagingbook.common.geometry.delaunay.Triangle; 015 016import java.util.ArrayList; 017import java.util.Collection; 018import java.util.Collections; 019import java.util.LinkedList; 020import java.util.List; 021 022/** 023 * <p> 024 * This is an implementation of the triangulation algorithm described in [1]. 025 * </p> 026 * <p> 027 * [1] L. J. Guibas, D. E. Knuth, and M. Sharir" "Randomized incremental construction of Delaunay and Voronoi diagrams", 028 * Algorithmica, 7, pp. 381--413 (1992). 029 * </p> 030 * 031 * @author WB 032 */ 033public class TriangulationGuibas implements DelaunayTriangulation { 034 035 private final List<Pnt2d> points; 036 private final List<Triangle2D> triangles; 037 private final Triangle2D outerTriangle; 038 039 /** 040 * Constructor. 041 * @param points the point set to be triangulated 042 * @param shuffle set {@code true} to randomly shuffle the input points 043 */ 044 public TriangulationGuibas(Collection<? extends Pnt2d> points, boolean shuffle) { 045 // TODO: change to point array or iterable! 046 if (points == null || points.size() < 3) { 047 throw new IllegalArgumentException("Point set must contain at least 3 points."); 048 } 049 this.points = new ArrayList<Pnt2d>(points); 050 if (shuffle) { 051 Collections.shuffle(this.points); 052 } 053 this.outerTriangle = new Triangle2D(DelaunayTriangulation.makeOuterTriangle(points)); 054 this.triangles = new ArrayList<>(); 055 triangulate(); 056 } 057 058 /** 059 * Constructor. Supplied points are inserted without shuffling, i.e., in their original order. 060 * 061 * @param points the point set to be triangulated 062 */ 063 public TriangulationGuibas(Collection<? extends Pnt2d> points) { 064 this(points, false); 065 } 066 067 // ----------------------------------------------------------------------------- 068 069 @Override 070 public int size() { 071 return triangles.size(); 072 } 073 074 @Override 075 public List<Triangle> getTriangles() { 076 return Collections.unmodifiableList(triangles); 077 } 078 079 @Override 080 public List<Pnt2d> getPoints() { 081 return points; 082 } 083 084 // ----------------------------------------------------------------------------- 085 086 private void triangulate() { 087 triangles.add(outerTriangle); 088 089 for (Pnt2d pnt : points) { 090 Triangle2D triangle = this.findContainingTriangle(pnt); 091 092 if (triangle == null) { // pnt is outside of any triangle 093 /* If no containing triangle exists, then the vertex is not inside a triangle 094 * (this can also happen due to numerical errors) and lies on an edge. In order 095 * to find this edge we search all edges of the triangle soup and select the one 096 * which is nearest to the point we try to add. This edge is removed and four 097 * new edges are added. 098 */ 099 Edge2D edge = this.findNearestEdge(pnt); 100 101 Triangle2D tr1 = this.findOneTriangleSharing(edge); 102 Triangle2D tr2 = this.findNeighbour(tr1, edge); 103 104 Pnt2d noneEdgeVertex1 = tr1.getOppositeVertex(edge); 105 Pnt2d noneEdgeVertex2 = tr2.getOppositeVertex(edge); 106 107 triangles.remove(tr1); 108 triangles.remove(tr2); 109 110 Triangle2D triangle1 = new Triangle2D(edge.a, noneEdgeVertex1, pnt); 111 Triangle2D triangle2 = new Triangle2D(edge.b, noneEdgeVertex1, pnt); 112 Triangle2D triangle3 = new Triangle2D(edge.a, noneEdgeVertex2, pnt); 113 Triangle2D triangle4 = new Triangle2D(edge.b, noneEdgeVertex2, pnt); 114 115 triangles.add(triangle1); 116 triangles.add(triangle2); 117 triangles.add(triangle3); 118 triangles.add(triangle4); 119 120 121 legalizeEdge(triangle1, new Edge2D(edge.a, noneEdgeVertex1), pnt); 122 legalizeEdge(triangle2, new Edge2D(edge.b, noneEdgeVertex1), pnt); 123 legalizeEdge(triangle3, new Edge2D(edge.a, noneEdgeVertex2), pnt); 124 legalizeEdge(triangle4, new Edge2D(edge.b, noneEdgeVertex2), pnt); 125 } 126 else { // pnt is inside the triangle <a,b,c>. 127 Pnt2d a = triangle.a; 128 Pnt2d b = triangle.b; 129 Pnt2d c = triangle.c; 130 131 triangles.remove(triangle); 132 133 Triangle2D triangle1 = new Triangle2D(a, b, pnt); 134 Triangle2D triangle2 = new Triangle2D(b, c, pnt); 135 Triangle2D triangle3 = new Triangle2D(c, a, pnt); 136 137 triangles.add(triangle1); 138 triangles.add(triangle2); 139 triangles.add(triangle3); 140 141 legalizeEdge(triangle1, new Edge2D(a, b), pnt); 142 legalizeEdge(triangle2, new Edge2D(b, c), pnt); 143 legalizeEdge(triangle3, new Edge2D(c, a), pnt); 144 } 145 } 146 147 // Remove all triangles containing any vertex of the super triangle: 148 this.removeTrianglesUsing(outerTriangle.a); 149 this.removeTrianglesUsing(outerTriangle.b); 150 this.removeTrianglesUsing(outerTriangle.c); 151 } 152 153 /** 154 * This method legalizes edges by recursively flipping all illegal edges. 155 * 156 * @param triangle the triangle 157 * @param edge the edge to be legalized 158 * @param newVertex the new vertex 159 */ 160 private void legalizeEdge(Triangle2D triangle, Edge2D edge, Pnt2d newVertex) { 161 Triangle2D neighbourTriangle = this.findNeighbour(triangle, edge); 162 // If the triangle has a neighbor, then legalize the edge 163 if (neighbourTriangle != null) { 164 if (neighbourTriangle.isPointInCircumCircle(newVertex)) { 165 triangles.remove(triangle); 166 triangles.remove(neighbourTriangle); 167 168 Pnt2d noneEdgeVertex = neighbourTriangle.getOppositeVertex(edge); 169 170 Triangle2D triangle1 = new Triangle2D(noneEdgeVertex, edge.a, newVertex); 171 Triangle2D triangle2 = new Triangle2D(noneEdgeVertex, edge.b, newVertex); 172 173 triangles.add(triangle1); 174 triangles.add(triangle2); 175 176 legalizeEdge(triangle1, new Edge2D(noneEdgeVertex, edge.a), newVertex); 177 legalizeEdge(triangle2, new Edge2D(noneEdgeVertex, edge.b), newVertex); 178 } 179 } 180 } 181 182 // triangle-related methods --------------------------- 183 184 /** 185 * Returns the triangle that contains the specified point or null if no such triangle exists. 186 * 187 * @param point the query point 188 * @return the containing triangle or {@code null} if none was found 189 */ 190 public Triangle2D findContainingTriangle(Pnt2d point) { 191 for (Triangle2D triangle : triangles) { 192 if (triangle.containsPoint(point)) { 193 return triangle; 194 } 195 } 196 return null; 197 } 198 199 /** 200 * Returns the neighboring triangle of the specified triangle sharing the same edge as specified. If no neighbor 201 * sharing the same edge exists {@code null} is returned. NOTE: Searching over ALL triangles seems to be 202 * unnecessarily expensive! 203 * 204 * @param tri1 the triangle 205 * @param edge the edge 206 * @return the triangle's neighboring triangle sharing the same edge or {@code null} if no such triangle exists 207 */ 208 public Triangle2D findNeighbour(Triangle2D tri1, Edge2D edge) { 209 for (Triangle2D tri2 : triangles) { 210 if (tri2.containsEdge(edge) && tri2 != tri1) { 211 return tri2; 212 } 213 } 214 return null; 215 } 216 217 /** 218 * Returns one of the possible triangles sharing the specified edge. Based on the ordering of the triangles in this 219 * triangle soup the returned triangle may differ. To find the other triangle that shares this edge use the 220 * {@code findNeighbour(Triangle2D triangle, Edge2D edge)} method. 221 * 222 * @param edge the edge 223 * @return the triangle that shares the specified edge or {@code null} if none exists 224 */ 225 public Triangle2D findOneTriangleSharing(Edge2D edge) { 226 for (Triangle2D triangle : triangles) { 227 if (triangle.containsEdge(edge)) { 228 return triangle; 229 } 230 } 231 return null; 232 } 233 234 /** 235 * Returns the triangle edge nearest to the specified point. 236 * 237 * @param point the query point 238 * @return the triangle edge nearest to the specified point 239 */ 240 public Edge2D findNearestEdge(Pnt2d point) { 241 Edge2D minEdge = null; 242 double minDist = Double.POSITIVE_INFINITY; 243 for (Triangle2D tri : triangles) { 244 Edge2D.Distance ed = tri.findMinEdgeDistance(point); 245 double dist = ed.getDistance(); 246 if (dist < minDist) { 247 minDist = dist; 248 minEdge = ed.getEdge(); 249 } 250 } 251 return minEdge; 252 } 253 254 /** 255 * Removes all triangles that contain the specified corner point. 256 * @param point the corner point 257 */ 258 public void removeTrianglesUsing(Pnt2d point) { 259 List<Triangle2D> trianglesToBeRemoved = new LinkedList<>(); 260 for (Triangle2D triangle : triangles) { 261 if (triangle.hasVertex(point)) { 262 trianglesToBeRemoved.add(triangle); 263 } 264 } 265 triangles.removeAll(trianglesToBeRemoved); 266 } 267}