001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.delaunay.guibas; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.delaunay.Triangle; 013 014import java.util.Arrays; 015 016/** 017 * Represents a 2D triangle, specified by three corner points. Instances of this class are immutable. 018 */ 019public class Triangle2D implements Triangle { 020 021 protected final Pnt2d a, b, c; 022 private final boolean isOrientedCCW; 023 024 /** 025 * Constructor of the 2D triangle class used to create a new triangle instance from three 2D vectors describing the 026 * triangle's vertices. 027 * 028 * @param a the first vertex of the triangle 029 * @param b the second vertex of the triangle 030 * @param c the third vertex of the triangle 031 */ 032 public Triangle2D(Pnt2d a, Pnt2d b, Pnt2d c) { 033 this.a = a; 034 this.b = b; 035 this.c = c; 036 isOrientedCCW = findIfOrientedCCW(); 037 } 038 039 public Triangle2D(Pnt2d[] points) { 040// this(new Vector2D(points[0]), new Vector2D(points[1]), new Vector2D(points[2])); 041 this(points[0], points[1], points[2]); 042 } 043 044 /** 045 * Tests if a 2D point lies inside this 2D triangle. See See Christer Ericson, Real-Time Collision Detection, CRC 046 * Press, 2004 (Ch. 5, p. 206). 047 * 048 * @param point the point to be checked 049 * @return {@code true} iff the point lies inside this 2D triangle 050 */ 051 public boolean containsPoint(Pnt2d point) { 052 double pab = point.minus(a).cross(b.minus(a)); 053 double pbc = point.minus(b).cross(c.minus(b)); 054 if (!hasSameSign(pab, pbc)) { 055 return false; 056 } 057 double pca = point.minus(c).cross(a.minus(c)); 058 if (!hasSameSign(pab, pca)) { 059 return false; 060 } 061 return true; 062 } 063 064 /** 065 * Tests if a given point lies in the circumcircle of this triangle. Let the triangle ABC appear in counterclockwise 066 * (CCW) order. Then when det > 0, the point lies inside the circumcircle through the three points a, b and c. If 067 * instead det < 0, the point lies outside the circumcircle. When det = 0, the four points are cocircular. If the 068 * triangle is oriented clockwise (CW) the result is reversed. See Christer Ericson, Real-Time Collision Detection, 069 * CRC Press, 2004 (Ch. 3, p. 34). 070 * 071 * @param point the point to be checked 072 * @return {@code true} iff the point lies inside the circumcircle through the three points a, b, and c of the 073 * triangle 074 */ 075 protected boolean isPointInCircumCircle(Pnt2d point) { 076 final double a11 = a.getX() - point.getX(); 077 final double a21 = b.getX() - point.getX(); 078 final double a31 = c.getX() - point.getX(); 079 080 final double a12 = a.getY() - point.getY(); 081 final double a22 = b.getY() - point.getY(); 082 final double a32 = c.getY() - point.getY(); 083 084 final double a13 = a11 * a11 + a12 * a12; 085 final double a23 = a21 * a21 + a22 * a22; 086 final double a33 = a31 * a31 + a32 * a32; 087 088 final double det = 089 a11 * a22 * a33 + a12 * a23 * a31 + 090 a13 * a21 * a32 - a13 * a22 * a31 - 091 a12 * a21 * a33 - a11 * a23 * a32; 092 093 return isOrientedCCW ? det > 0.0 : det < 0.0; 094 } 095 096 /** 097 * Tests if a given point lies in the circumcircle of this triangle. Let the triangle ABC appear in counterclockwise 098 * (CCW) order. Then when det > 0, the point lies inside the circumcircle through the three points a, b and c. If 099 * instead det < 0, the point lies outside the circumcircle. When det = 0, the four points are cocircular. If the 100 * triangle is oriented clockwise (CW) the result is reversed. See Christer Ericson, Real-Time Collision Detection, 101 * CRC Press, 2004 (Ch. 3, p. 32). Since triangles are immutable, this property can be pre-calculated. 102 * 103 * @return {@code true} iff the triangle abc is oriented counterclockwise (CCW) 104 */ 105 private boolean findIfOrientedCCW() { 106 double a11 = a.getX() - c.getX(); 107 double a21 = b.getX() - c.getX(); 108 double a12 = a.getY() - c.getY(); 109 double a22 = b.getY() - c.getY(); 110 double det = a11 * a22 - a12 * a21; 111 return det > 0.0; 112 } 113 114 /** 115 * Test if this triangle is oriented counterclockwise (CCW). This property is pre-calculated. 116 * 117 * @return {@code true} iff the triangle ABC is oriented counterclockwise (CCW) 118 */ 119 protected boolean isOrientedCCW() { 120 return isOrientedCCW; 121 } 122 123 /** 124 * Returns {@code true} if this triangle contains the given edge. 125 * 126 * @param edge the edge to be tested 127 * @return {@code true} iff this triangle contains the specified edge 128 */ 129 public boolean containsEdge(Edge2D edge) { 130 return (a == edge.a || b == edge.a || c == edge.a) && (a == edge.b || b == edge.b || c == edge.b); 131 } 132 133 /** 134 * Returns the vertex of this triangle opposite to the specified edge. 135 * 136 * @param edge the edge (which must be contained in this triangle) 137 * @return the triangle vertex opposite to the specified edge 138 */ 139 public Pnt2d getOppositeVertex(Edge2D edge) { 140 final Pnt2d p1 = edge.a; 141 final Pnt2d p2 = edge.b; 142 if ((a == p1 && b == p2) || (a == p2 && b == p1)) { 143 return c; 144 } 145 if ((a == p1 && c == p2) || (a == p2 && c == p1)) { 146 return b; 147 } 148 if ((b == p1 && c == p2) || (b == p2 && c == p1)) { 149 return a; 150 } 151 throw new IllegalArgumentException("Specified edge is not part of this triangle"); 152 } 153 154 /** 155 * Checks if the given vertex is amongst the triangle's vertices. 156 * 157 * @param vertex the vertex to be checked 158 * @return {@code true} if the vertex is one of the corners of this triangle 159 */ 160 public boolean hasVertex(Pnt2d vertex) { 161 return (a == vertex || b == vertex || c == vertex); 162 } 163 164 /** 165 * Calculates the minimum distance from the specified point to this triangle. The result is returned as an 166 * {@link Edge2D.Distance} instance, representing the point's distance to the closest edge of this triangle. 167 * 168 * @param point the point to be checked 169 * @return the edge of this triangle that is closest to the specified point 170 */ 171 public Edge2D.Distance findMinEdgeDistance(Pnt2d point) { 172 Edge2D.Distance[] distances = { 173 new Edge2D(a, b).distanceFromPoint(point), 174 new Edge2D(b, c).distanceFromPoint(point), 175 new Edge2D(c, a).distanceFromPoint(point) 176 }; 177 Arrays.sort(distances); 178 return distances[0]; 179 } 180 181 /** 182 * Tests if the two arguments have the same sign. 183 * @param a first quantity 184 * @param b second quantity 185 * @return {@code true} iff both arguments have the same sign 186 */ 187 private boolean hasSameSign(double a, double b) { 188 return Math.signum(a) == Math.signum(b); 189 //return a * b > 0; 190 } 191 192 @Override 193 public String toString() { 194 return Triangle2D.class.getSimpleName() + "[" + a + ", " + b + ", " + c + "]"; 195 } 196 197 198 public Pnt2d[] getPoints() { 199 return new Pnt2d[] {a, b, c}; 200 } 201 202}