001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.corners;
011
012import ij.process.FloatProcessor;
013import ij.process.ImageProcessor;
014import imagingbook.common.corners.SubpixelMaxInterpolator.Method;
015import imagingbook.common.filter.linear.GaussianFilterSeparable;
016import imagingbook.common.filter.linear.LinearFilterSeparable;
017import imagingbook.common.ij.DialogUtils;
018import imagingbook.common.image.ImageMath;
019import imagingbook.common.util.ParameterBundle;
020
021import java.util.ArrayList;
022import java.util.Collections;
023import java.util.List;
024
025import static imagingbook.common.ij.IjUtils.convolveX;
026import static imagingbook.common.ij.IjUtils.convolveY;
027import static imagingbook.common.math.Arithmetic.sqr;
028
029/**
030 * <p>
031 * Abstract super class for all corner detectors based on the local structure matrix (tensor). See Ch. 6 of [1] for
032 * details.
033 * </p>
034 * <p>
035 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
036 * (2022).
037 * </p>
038 *
039 * @author WB
040 * @version 2022/03/30
041 * @see HarrisCornerDetector
042 * @see MopsCornerDetector
043 * @see ShiTomasiCornerDetector
044 */
045public abstract class GradientCornerDetector {
046        
047        /** For testing/example calculations only! */
048        public static boolean RETAIN_TEMPORARY_DATA = false;
049        
050        public static class Parameters implements ParameterBundle<GradientCornerDetector> {
051                @DialogUtils.DialogLabel("Apply pre-filter")
052                public boolean doPreFilter = true;
053                
054                @DialogUtils.DialogLabel("Gaussian smoothing radius (\u03C3)")@DialogUtils.DialogDigits(3)
055                public double sigma = 1.275;
056                
057                @DialogUtils.DialogLabel("Border margins")
058                public int border = 20; // TODO: replace 'border' by ROI rectangle
059                
060                @DialogUtils.DialogLabel("Clean up corners")
061                public boolean doCleanUp = true;
062                
063                @DialogUtils.DialogLabel("Min. distance between final corners")@DialogUtils.DialogDigits(1)
064                public double dmin = 10;
065                
066                @DialogUtils.DialogLabel("Subpixel positioning method")
067                public Method maxLocatorMethod = Method.None;
068                
069                @DialogUtils.DialogLabel("Corner response threshold (th)")@DialogUtils.DialogDigits(1)
070                public double scoreThreshold = 100;
071                
072                @Override
073                public boolean validate() {
074                        return sigma > 0 && border >= 0 && dmin >= 0 && scoreThreshold > 0;
075                }
076        }
077        
078        protected static final float UndefinedScoreValue = 0;   // to be returned when corner score is undefined
079        
080        //filter kernels (one-dim. part of separable 2D filters)
081        private final static float[] hp = {2f/9, 5f/9, 2f/9};           // pre-smoothing filter kernel
082        private final static float[] hd = {0.5f, 0, -0.5f};                     // first-derivative kernel
083//      private final static float[] hb = {1f/64, 6f/64, 15f/64, 20f/64, 15f/64, 6f/64, 1f/64}; // original gradient blur filter kernel
084        
085        protected final int M, N;
086        protected final Parameters params;
087        protected final FloatProcessor Q;
088        
089        private final SubpixelMaxInterpolator maxLocator;
090//      private final List<Corner> corners;
091        
092        // retained mainly for debugging
093        private FloatProcessor A = null;
094        private FloatProcessor B = null;
095        private FloatProcessor C = null;
096        
097        // ---------------------------------------------------------------------------
098        
099        protected GradientCornerDetector(ImageProcessor ip, Parameters params) {
100                this.M = ip.getWidth();
101                this.N = ip.getHeight();
102                this.params = params;
103                this.maxLocator = params.maxLocatorMethod.getInstance();
104                //(params.maxLocatorMethod == Method.None) ? null : 
105                        //SubpixelMaxInterpolator.getInstance(params.maxLocatorMethod);
106                this.Q = makeCornerScores(ip);
107        }
108
109        /**
110         * Calculates the corner response score for a single image position (u,v) from the elements A, B, C of the local
111         * structure matrix. The method should normalize the score value, such that 100 is returned for the default
112         * threshold value. To be implemented by concrete sub-classes.
113         *
114         * @param A = Ixx(u,v)
115         * @param B = Iyy(u,v)
116         * @param C = Ixy(u,v)
117         * @return the corner score
118         * @see HarrisCornerDetector
119         * @see ShiTomasiCornerDetector
120         */
121        protected abstract float getCornerScore(float A, float B, float C);
122        
123        // -------------------------------------------------------------
124        
125        private FloatProcessor makeCornerScores(ImageProcessor I) {
126                FloatProcessor Ix = I.convertToFloatProcessor(); 
127                FloatProcessor Iy = (FloatProcessor) Ix.duplicate();
128                
129                // nothing really but a Sobel-type gradient:    TODO: replace by LinearFilter
130                if (params.doPreFilter) {
131                        convolveY(Ix, hp);                      // pre-filter Ix vertically
132                        convolveX(Iy, hp);                      // pre-filter Iy horizontally
133                }
134                
135                convolveX(Ix, hd);                              // get first derivative in x
136                convolveY(Iy, hd);                              // get first derivative in y
137                
138                // gradient products:
139                A = ImageMath.sqr(Ix);                          // A(u,v) = Ixx(u,v) = (Ix(u,v))^2
140                B = ImageMath.sqr(Iy);                          // B(u,v) = Iyy(u,v) = (Iy(u,v))^2
141                C = ImageMath.mult(Ix, Iy);                     // C(u,v) = Ixy(u,v) = Ix(u,v)*Iy(u,v)
142                
143                // blur the gradient components with a small Gaussian:
144                LinearFilterSeparable gf = new GaussianFilterSeparable(params.sigma);
145                gf.applyTo(A);
146                gf.applyTo(B);
147                gf.applyTo(C);
148                
149                FloatProcessor Q = new FloatProcessor(M, N);
150                
151                final float[] pA = (float[]) A.getPixels();
152                final float[] pB = (float[]) B.getPixels();
153                final float[] pC = (float[]) C.getPixels();
154                final float[] pQ = (float[]) Q.getPixels();
155                
156                for (int i = 0; i < M * N; i++) {
157                        pQ[i] = getCornerScore(pA[i], pB[i], pC[i]);
158                }
159                
160                return Q;
161        }
162        
163
164        /**
165         * Returns the corner score function as a {@link FloatProcessor} object.
166         * @return the score function
167         */
168        public FloatProcessor getQ() {
169                return this.Q;
170        }
171        
172        public FloatProcessor getA() {
173                return this.A;
174        }
175        
176        public FloatProcessor getB() {
177                return this.B;
178        }
179        
180        public FloatProcessor getC() {
181                return this.C;
182        }
183        
184        public List<Corner> getCorners() {
185                List<Corner> cl = collectCorners(params.scoreThreshold, params.border);
186                if (params.doCleanUp) {
187                        cl = cleanupCorners(cl);
188                }
189                return cl;
190        }
191        
192        // ----------------------------------------------------------
193        
194        /*
195         * Returned samples are arranged as follows:
196         *      s4 s3 s2
197         *  s5 s0 s1
198         *  s6 s7 s8
199         */
200        private float[] getNeighborhood(FloatProcessor Q, int u, int v) {
201                if (u <= 0 || u >= M - 1 || v <= 0 || v >= N - 1) {
202                        return null;
203                } 
204                else {
205                        final float[] q = (float[]) Q.getPixels();
206                        float[] s = new float[9];
207                        final int i0 = (v - 1) * M + u;
208                        final int i1 = v * M + u;
209                        final int i2 = (v + 1) * M + u;
210                        s[0] = q[i1];
211                        s[1] = q[i1 + 1];
212                        s[2] = q[i0 + 1];
213                        s[3] = q[i0];
214                        s[4] = q[i0 - 1];
215                        s[5] = q[i1 - 1];
216                        s[6] = q[i2 - 1];
217                        s[7] = q[i2];
218                        s[8] = q[i2 + 1];
219                        return s;
220                }
221        }
222        
223        private boolean isLocalMax(float[] s) {
224                if (s == null) {
225                        return false;
226                }
227                else {
228                        final float s0 = s[0];
229                        return  // check 8 neighbors of q0
230                                        s0 > s[4] && s0 > s[3] && s0 > s[2] &&
231                                        s0 > s[5] &&              s0 > s[1] && 
232                                        s0 > s[6] && s0 > s[7] && s0 > s[8] ;
233                }
234        }
235        
236        private List<Corner> collectCorners(double scoreThreshold, int borderWidth) {
237                float th = (float) scoreThreshold; //params.scoreThreshold;
238                //int border = params.border;
239                List<Corner> C = new ArrayList<>();
240                for (int v = borderWidth; v < N - borderWidth; v++) {
241                        for (int u = borderWidth; u < M - borderWidth; u++) {
242                                float[] qn = getNeighborhood(Q, u, v);
243                                if (qn != null && qn[0] > th && isLocalMax(qn)) {
244                                        Corner c = makeCorner(u, v, qn);
245                                        if (c != null) {
246                                                C.add(c);
247                                        }
248                                }
249                        }
250                }
251                return C;
252        }
253        
254        private List<Corner> cleanupCorners(List<Corner> C) {
255                final double dmin2 = sqr(params.dmin);
256                // sort corners by descending q-value:
257                Collections.sort(C);
258                // we use an array of corners for efficiency reasons:
259                Corner[] Ca = C.toArray(new Corner[C.size()]);
260                List<Corner> Cclean = new ArrayList<>(C.size());
261                for (int i = 0; i < Ca.length; i++) {
262                        Corner c0 = Ca[i];              // get next strongest corner
263                        if (c0 != null) {
264                                Cclean.add(c0);
265                                // delete all remaining corners cj too close to c0:
266                                for (int j = i + 1; j < Ca.length; j++) {
267                                        Corner cj = Ca[j];
268                                        if (cj != null && c0.distanceSq(cj) < dmin2)
269                                                Ca[j] = null;   //delete corner cj from C
270                                }
271                        }
272                }
273                return Cclean;
274        }
275
276        /**
277         * Creates a new {@link Corner} instance. Performs sub-pixel position refinement if a {@link #maxLocator} is
278         * defined.
279         *
280         * @param u the corner's horizontal position (int)
281         * @param v the corner's vertical position (int)
282         * @param qn the 9 corner scores in the 3x3 neighborhood
283         * @return a new {@link Corner} instance
284         */
285        private Corner makeCorner(int u, int v, float[] qn) {
286                if (maxLocator == null) {
287                        // no sub-pixel refinement, use original integer coordinates
288                        return new Corner(u, v, qn[0]);
289                }
290                else {
291                        // do sub-pixel refinement
292                        float[] xyz = maxLocator.getMax(qn);
293                        return (xyz == null) ? null : new Corner(u + xyz[0], v + xyz[1], xyz[2]);
294                }
295        }
296        
297        
298}