001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.color.quantize; 011 012import imagingbook.common.color.RgbUtils; 013import imagingbook.common.color.statistics.ColorHistogram; 014 015import java.util.Arrays; 016import java.util.LinkedList; 017import java.util.List; 018import java.util.Locale; 019import java.util.Random; 020 021import static imagingbook.common.math.Arithmetic.sqr; 022 023/** 024 * <p> 025 * This class implements color quantization using k-means clustering of image pixels in RGB color space. It provides two 026 * modes for selecting initial color clusters: (a) random sampling of the input colors, (b) using the K most frequent 027 * colors. Note that this implementation is mainly to demonstrate the concept. Depending on the data size and number of 028 * quantization colors, this process may be excessively slow compared to other methods. It is usually impractical even 029 * for medium-sized images. During clustering all input pixels are used, i.e., no stochastic sub-sampling is applied 030 * (which could make the process a lot more efficient). 031 * </p> 032 * 033 * @author WB 034 * @version 2022/11/06 035 * @see MedianCutQuantizer 036 * @see OctreeQuantizer 037 */ 038public class KMeansClusteringQuantizer implements ColorQuantizer { 039 040 /** 041 * Seed for random number generation (set to a nonzero value to obtain repeatable results for debugging and 042 * testing). 043 */ 044 public static long RandomSeed = 0; 045 private final Random random = (RandomSeed == 0) ? new Random() : new Random(RandomSeed); 046 047 public static int DefaultIterations = 500; 048 049 private final ColorCluster[] clusters; 050 private final double totalError; 051 private final float[][] colormap; 052 053 054 /** Method for choosing initial color clusters. */ 055 public enum InitialClusterMethod { 056 /** Use K different random colors to initialize clusters. */ 057 Random, 058 /** Use the K most frequent image colors to initialize clusters. */ 059 MostFrequent 060 }; 061 062 // -------------------------------------------------------------- 063 064 /** 065 * Constructor, creates a new {@link KMeansClusteringQuantizer} with up to K colors, using default parameters. 066 * 067 * @param pixels an image as a aRGB-encoded int array 068 * @param K the desired number of colors (1 or more) 069 */ 070 public KMeansClusteringQuantizer(int[] pixels, int K) { 071 this(pixels, K, InitialClusterMethod.Random, DefaultIterations); 072 } 073 074 /** 075 * Constructor, creates a new {@link KMeansClusteringQuantizer} with up to K colors, but never more than the number 076 * of colors found in the supplied pixel data. 077 * 078 * @param pixels an image as a aRGB-encoded int array 079 * @param K the desired number of colors (1 or more) 080 * @param initMethod the method to initialize color clusters ({@link InitialClusterMethod}) 081 * @param maxIterations the maximum number of clustering iterations 082 */ 083 public KMeansClusteringQuantizer(int[] pixels, int K, InitialClusterMethod initMethod, int maxIterations) { 084 clusters = initClusters(pixels, K, initMethod); 085 totalError = doCluster(pixels, maxIterations); 086 colormap = makeColorMap(); 087 } 088 089 // -------------------------------------------------------------- 090 091 private ColorCluster[] initClusters(int[] pixels, int K, InitialClusterMethod method) { 092 int[] samples = null; 093 switch (method) { 094 case Random: 095 samples = getRandomColors(pixels, K); 096 case MostFrequent: 097 samples = getMostFrequentColors(pixels, K); 098 } 099 int k = Math.min(samples.length, K); 100 ColorCluster[] clstrs = new ColorCluster[k]; // create an array of k clusters 101 for (int i = 0; i < k; i++) { 102 clstrs[i] = new ColorCluster(samples[i]); // initialize cluster center 103 } 104 return clstrs; 105 } 106 107 /** 108 * Returns (up to) k colors randomly selected from the given pixel data. 109 */ 110 private int[] getRandomColors(int[] pixels, int k) { 111 ColorHistogram colorHist = new ColorHistogram(pixels); 112 int[] colors = colorHist.getColors(); 113 if (colors.length <= k) { 114 return colors; 115 } 116 else { 117 shuffle(colors, this.random); // randomly permute colors 118 return Arrays.copyOf(colors, k); 119 } 120 } 121 122 /** 123 * Perform random permutation on the specified array. 124 * https://stackoverflow.com/questions/1519736/random-shuffling-of-an-array 125 */ 126 private void shuffle(int[] arr, Random random) { 127 for (int i = arr.length - 1; i > 0; i--) { 128 int idx = random.nextInt(i + 1); 129 int tmp = arr[idx]; 130 arr[idx] = arr[i]; 131 arr[i] = tmp; 132 } 133 } 134 135 /** 136 * Returns the (maximally) k most frequent color values in the given pixel data. If fewer than k colors are 137 * available, these are returned, i.e., the resulting array may have less than k elements. 138 */ 139 private int[] getMostFrequentColors(int[] pixels, int k) { 140 ColorHistogram colorHist = new ColorHistogram(pixels, true); // sorts color bins by frequency 141 int[] colors = colorHist.getColors(); 142 if (colors.length <= k) { 143 return colors; 144 } 145 else { 146 return Arrays.copyOf(colors, k); 147 } 148 } 149 150 private double doCluster(int[] pixels, int maxIterations) { 151 int changed = Integer.MAX_VALUE; 152 double distSum = Double.POSITIVE_INFINITY; 153 int j = 0; 154 while (changed > 0 && j < maxIterations) { 155 distSum = assignSamples(pixels); 156 changed = updateClusters(); 157 j++; 158 } 159 return distSum; 160 } 161 162 163 private double assignSamples(int[] pixels) { 164 double distSum = 0; 165 for (int p : pixels) { 166 double dist = addToClosestCluster(p); 167 distSum = distSum + dist; 168 } 169 return distSum; 170 } 171 172 private int updateClusters() { 173 int changed = 0; 174 for (ColorCluster c : clusters) { 175 changed = changed + c.update(); 176 } 177 return changed; 178 } 179 180 private double addToClosestCluster(int p) { 181 double minDist = Double.POSITIVE_INFINITY; 182 ColorCluster closest = null; 183 for (ColorCluster c : clusters) { 184 double d = c.getSquaredDistance(p); 185 if (d < minDist) { 186 minDist = d; 187 closest = c; 188 } 189 } 190 closest.addPixel(p); 191 return minDist; 192 } 193 194 private float[][] makeColorMap() { 195 List<float[]> colList = new LinkedList<>(); 196 for (ColorCluster c : clusters) { 197 if (!c.isEmpty()) { 198 colList.add(c.getCenterColor()); 199 } 200 } 201 return colList.toArray(new float[0][]); 202 } 203 204 // ------- methods required by abstract super class ----------------------- 205 206 @Override 207 public float[][] getColorMap() { 208 return colormap; 209 } 210 211 212 // ------------------------------------------------------------------------ 213 /** 214 * Lists the color clusters to System.out (for debugging only). 215 */ 216 public void listClusters() { 217 for (ColorCluster c : clusters) { 218 System.out.println(c.toString()); 219 } 220 } 221 222 /** 223 * Returns the final clustering error, calculated as the sum of the squared distances of the color samples to the 224 * associated cluster centers. This calculation is performed during the final iteration. 225 * 226 * @return the final clustering error 227 */ 228 public double getTotalError() { 229 return totalError; 230 } 231 232 // ------------------------------------------------------------------------ 233 234 /** 235 * This inner class represents a color cluster. */ 236 private static class ColorCluster { 237 private int sR, sG, sB; // RGB sums of contained pixels 238 private int pcount; // pixel counter, used during pixel assignment 239 private int population = 0; // number of pixels contained in this cluster 240 private double cR, cG, cB; // center of this cluster 241 242 private ColorCluster(int p) { 243 int[] rgb = RgbUtils.intToRgb(p); 244 cR = rgb[0]; 245 cG = rgb[1]; 246 cB = rgb[2]; 247 reset(); 248 } 249 250 private float[] getCenterColor() { 251 return new float[] {(float)cR, (float)cG, (float)cB}; 252 } 253 254 private boolean isEmpty() { 255 return (population == 0); 256 } 257 258 private void reset() { // reset sums, used at the start of the pixel assignment. 259 sR = 0; 260 sG = 0; 261 sB = 0; 262 pcount = 0; 263 } 264 265 private void addPixel(int p) { 266 int[] rgb = RgbUtils.intToRgb(p); 267 sR += rgb[0]; 268 sG += rgb[1]; 269 sB += rgb[2]; 270 pcount = pcount + 1; 271 } 272 273 /** 274 * This method is invoked after all samples have been assigned to clusters. It updates the cluster's center and 275 * returns by how much its population changed from the previous clustering (absolute count). 276 * 277 * @return the change in cluster population from the previous clustering 278 */ 279 private int update() { 280 if (pcount > 0) { 281 double scale = 1.0 / pcount; 282 cR = sR * scale; 283 cG = sG * scale; 284 cB = sB * scale; 285 } 286 int changeCount = Math.abs(pcount - population); // change in cluster population 287 population = pcount; 288 reset(); 289 return changeCount; 290 } 291 292 /** 293 * Calculates and returns the squared Euclidean distance between the color p and this cluster's center in RGB 294 * space. 295 * 296 * @param p Color sample 297 * @return squared distance to the cluster center 298 */ 299 private double getSquaredDistance(int p) { 300 int[] rgb = RgbUtils.intToRgb(p); 301 return sqr(rgb[0] - cR) + sqr(rgb[1] - cG) + sqr(rgb[2] - cB); 302 } 303 304 @Override 305 public String toString() { 306 return String.format(Locale.US, this.getClass().getSimpleName() + 307 ": ctr=(%.1f,%.1f,%.1f), pop=%d", cR, cG, cB, population); 308 } 309 } 310 311} 312