001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.color.gamma;
010
011/**
012 * <p>
013 * Defines the "modified gamma correction" used for converting linear to non-linear color component values. The mapping
014 * function consists of a linear and non-linear part. In the forward mapping ({@link #applyFwd(double)}), the linear
015 * part covers input values between a = 0,...,a0, while values a = a0,...,1 are mapped non-linearly. For the inverse
016 * mapping ({@link #applyInv(double)}), the linear part is b = 0,...,b0, the non-linear part is b = b0,...,1.
017 * Theoretically all mapping parameters can be derived from parameters {@code gamma} and {@code a0} (the linear to
018 * non-linear transition point) only. Note that {@code gamma} specifies the nominal &gamma; parameter for the
019 * <em>forward</em> (i.e., linear to non-linear) mapping, e.g., &gamma; = 1/2.4 for sRGB. See Sec. 3.7.6 of [1] for more
020 * details.
021 * </p>
022 * <p>
023 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
024 * (2022).
025 * </p>
026 *
027 * @author WB
028 * @version 2022/11/14
029 */
030public class ModifiedGammaMapping implements GammaMapping {
031        
032        /** Gamma mapping function instance for ITU-R BT.709 (see Table 3.1 of [1]). */
033        public static ModifiedGammaMapping ITU709 = new ModifiedGammaMapping(1/2.222, 0.018); //, 4.5, 0.099);
034
035        /**
036         * Gamma mapping function instance for sRGB (see Table 3.1 of [1]). Note that we need to specify parameters s and d
037         * too to comply strictly with the sRGB standard.
038         */
039        public static ModifiedGammaMapping sRGB = new ModifiedGammaMapping(1/2.4, 0.0031308, 12.92, 0.055);
040        
041        private final double gamma;
042        private final double igamma;
043        private final double a0;
044        private final double b0;
045        private final double s;
046        private final double d;
047
048        /**
049         * Constructor, derives parameters s and d from gamma and a0 (see Eq. 3.35 in [1]).
050         *
051         * @param gamma in [0,1], the nominal gamma value for the forward mapping (e.g., gamma = 1/2.4 for sRGB)
052         * @param a0 in [0,1], the linear to non-linear transition point (e.g., a0 = 1/2.4 for sRGB)
053         */
054        public ModifiedGammaMapping(double gamma, double a0) {
055                this(gamma, a0, s(gamma, a0), d(gamma, a0));
056        }
057
058        /**
059         * Constructor, accepts explicit parameters s and d to allow for minor inaccuracies in published standards.
060         *
061         * @param gamma in [0,1], the nominal gamma value for the forward mapping (e.g., gamma = 1/2.4 for sRGB)
062         * @param a0 in [0,1], the linear to non-linear transition point (e.g., a0 = 1/2.4 for sRGB)
063         * @param s &gt; 0, the slope s of the linear section (e.g., s = 12.92 for sRGB)
064         * @param d &ge; 0 the offset d of the non-linear section (e.g., s = 0.055 for sRGB)
065         */
066        public ModifiedGammaMapping(double gamma, double a0, double s, double d) {
067                this.a0 = a0;
068                this.b0 = s * a0;
069                this.gamma = gamma;
070                this.igamma = 1.0 / gamma;
071                this.s = s;
072                this.d = d;
073        }
074
075        /**
076         * Function s(gamma, a0) derives the slope s of the linear section from parameters gamma and a0 (see Eq. 3.35 in
077         * [1]).
078         *
079         * @param gamma the nominal gamma value for the forward mapping
080         * @param a0 the linear to non-linear transition point
081         * @return the slope s of the linear section
082         */
083        protected static double s(double gamma, double a0) {    // protected only to show in JavaDoc
084                return gamma / (a0 * (gamma - 1) + Math.pow(a0, 1 - gamma));
085        }
086
087        /**
088         * Function d(gamma, a0) derives the offset d of the non-linear section from parameters gamma and a0 (see Eq. 3.35
089         * in [1]).
090         *
091         * @param gamma the nominal gamma value for the forward mapping
092         * @param a0 the linear to non-linear transition point
093         * @return the offset d of the non-linear section
094         */
095        protected static double d(double gamma, double a0) {    // protected only to show in JavaDoc
096                return 1.0 / (Math.pow(a0, gamma) * (gamma - 1) + 1) - 1;
097        }
098        
099        // -------------------------------------------------------------------------------------
100        
101    @Override
102        public double applyFwd(double a) {
103                return (a <= a0) ?
104                        s * a :
105                        (1 + d) * Math.pow(a, gamma) - d;
106    }
107    
108    @Override
109        public double applyInv(double b) {
110        return (b <= b0) ?
111                (b / s) :
112                        Math.pow((b + d) / (1 + d), igamma);
113    }
114    
115    @Override
116        public float applyFwd(float a) {
117                return (float) applyFwd((double) a);
118    }
119    
120    @Override
121        public float applyInv(float b) {
122        return (float) applyInv((double) b);
123    }
124    
125    // -----------------------------------------------
126    
127    /**
128         * Forward Gamma mapping (from linear to non-linear component values).
129         * 
130         * @param A an array of linear component values in [0,1]
131         * @return an array of gamma-corrected (non-linear) component values
132         */
133    public float[] applyFwd(float A[]) {
134        float[] B = new float[A.length];
135        for (int i = 0; i < A.length; i++) {
136                B[i] = applyFwd(A[i]);
137        }
138                return B;
139    }
140    
141    /**
142         * Inverse Gamma mapping (from non-linear to linear component values).
143         * 
144         * @param B an array of non-linear (Gamma-corrected) component value in [0,1]
145         * @return an array of linear component values
146         */
147    public float[] applyInv(float B[]) {
148        float[] A = new float[B.length];
149        for (int i = 0; i < B.length; i++) {
150                A[i] = applyInv(B[i]);
151        }
152                return A;
153    }
154
155}