001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.color.cie;
011
012import imagingbook.common.math.Arithmetic;
013
014/**
015 * <p>
016 * Defines static methods for converting between CIE-XYZ coordinates (3D) and xy chromaticity values (2D). See Sec.
017 * 14.1.2 of [1] for details.
018 * </p>
019 * <p>
020 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
021 * (2022).
022 * </p>
023 *
024 * @author WB
025 */
026public abstract class CieUtils {
027
028    private CieUtils() {
029    }
030
031    /**
032     * Calculates the XYZ coordinates for a given point (x,y) in the CIE xy-color diagram. XYZ is located on the 3D
033     * plane X + Y + Z = 1. Returns (0,0,0) for y = 0;
034     *
035     * @param x x-coordinate (in the 2D xy-diagram)
036     * @param y y-coordinate (in the 2D xy-diagram)
037     * @return the associated XYZ coordinate
038     */
039    public static double[] xyToXYZ(double x, double y) {
040        return xyYToXYZ(x, y, 1.0);
041    }
042
043    /**
044     * Float version of {@link #xyToXYZ(double, double)}.
045     *
046     * @param x x-coordinate (in the 2D xy-diagram)
047     * @param y y-coordinate (in the 2D xy-diagram)
048     * @return the associated XYZ coordinate
049     */
050    public static float[] xyToXYZ(float x, float y) {
051        return xyYToXYZ(x, y, 1.0f);
052    }
053
054    /**
055     * Calculates the XYZ coordinates for a given point (x,y) in the CIE xy-color diagram, with Y explicitly specified.
056     *
057     * @param x x-coordinate (in the 2D xy-diagram)
058     * @param y y-coordinate (in the 2D xy-diagram)
059     * @param Y the Y-coordinate (in 3D color space)
060     * @return the associated XYZ coordinate
061     */
062    public static double[] xyYToXYZ(double x, double y, double Y) {
063        if (Arithmetic.isZero(y)) {
064            return new double[]{0, 0, 0};
065        } else {
066            double X = x * Y / y;
067            double Z = (1 - x - y) * Y / y;
068            return new double[]{X, Y, Z};
069        }
070    }
071
072    /**
073     * Float version of {@link #xyYToXYZ(double, double, double)}.
074     *
075     * @param x x-coordinate (in the 2D xy-diagram)
076     * @param y y-coordinate (in the 2D xy-diagram)
077     * @param Y the Y-coordinate (in 3D color space)
078     * @return the associated XYZ coordinate
079     */
080    public static float[] xyYToXYZ(float x, float y, float Y) {
081        if (Arithmetic.isZero(y)) {
082            return new float[]{0, 0, 0};
083        } else {
084            float X = x * Y / y;
085            float Z = (1 - x - y) * Y / y;
086            return new float[]{X, Y, Z};
087        }
088    }
089
090    /**
091     * Calculates the 2D (x,y) color diagram coordinates for 3D XYZ color coordinates (X,Y,Z).
092     *
093     * @param XYZ the XYZ coordinate (3D)
094     * @return the xy-coordinate (2D)
095     */
096    public static double[] XYZToxy(double[] XYZ) {
097        double X = XYZ[0];
098        double Y = XYZ[1];
099        double Z = XYZ[2];
100        double mag = X + Y + Z;
101        return (Arithmetic.isZero(mag)) ?
102                new double[]{0, 0} : new double[]{X / mag, Y / mag};
103    }
104
105    /**
106     * Calculates the 3D (x,y,z) color diagram coordinates for 3D XYZ color coordinates (X,Y,Z).
107     *
108     * @param XYZ the XYZ coordinate (3D)
109     * @return the xyz-coordinate (3D)
110     */
111    public static double[] XYZToxyz(double[] XYZ) {
112        double X = XYZ[0];
113        double Y = XYZ[1];
114        double Z = XYZ[2];
115        double mag = X + Y + Z;
116        return (Arithmetic.isZero(mag)) ?
117                new double[]{0, 0, 0} : new double[]{X / mag, Y / mag, Z / mag};
118    }
119
120    /**
121     * Float version of {@link #XYZToxy(double[])}.
122     *
123     * @param XYZ the XYZ coordinate (3D)
124     * @return the xy-coordinate (2D)
125     */
126    public static float[] XYZToxy(float[] XYZ) {
127        double X = XYZ[0];
128        double Y = XYZ[1];
129        double Z = XYZ[2];
130        double mag = X + Y + Z;
131        return (Arithmetic.isZero(mag)) ?
132                new float[]{0, 0} : new float[]{(float) (X / mag), (float) (Y / mag)};
133    }
134
135    /**
136     * Float version of {@link #XYZToxyz(double[])}.
137     *
138     * @param XYZ the XYZ coordinate (3D)
139     * @return the xyz-coordinate (§D)
140     */
141    public static float[] XYZToxyz(float[] XYZ) {
142        double X = XYZ[0];
143        double Y = XYZ[1];
144        double Z = XYZ[2];
145        double mag = X + Y + Z;
146        return (Arithmetic.isZero(mag)) ?
147                new float[]{0, 0, 0} : new float[]{(float) (X / mag), (float) (Y / mag), (float) (Z / mag)};
148    }
149
150}