001/******************************************************************************* 002 * Permission to use and distribute this software is granted under the BSD 2-Clause 003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved. 005 * Visit https://imagingbook.com for additional details. 006 ******************************************************************************/ 007package imagingbook.calibration.zhang.util; 008 009import imagingbook.common.math.Arithmetic; 010import imagingbook.common.math.Matrix; 011import org.apache.commons.math3.geometry.euclidean.threed.NotARotationMatrixException; 012import org.apache.commons.math3.geometry.euclidean.threed.Rotation; 013import org.apache.commons.math3.geometry.euclidean.threed.RotationConvention; 014import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; 015 016import static imagingbook.common.math.Arithmetic.isZero; 017import static imagingbook.common.math.Matrix.add; 018import static imagingbook.common.math.Matrix.idMatrix; 019import static imagingbook.common.math.Matrix.multiply; 020import static imagingbook.common.math.Matrix.normL2; 021import static imagingbook.common.math.Matrix.zeroVector; 022 023/** 024 * This class defines methods for converting between Rodrigues rotation vectors and 3D rotation matrices, plus some 025 * related utility methods. None of these methods is currently used in other parts of the calibration library. 026 */ 027public class Rotations { 028 029 private static final double TWO_PI = 2 * Math.PI; 030 031 // ++++++++++++++ Rodrigues vector --> Rotation matrix +++++++++++++++++++ 032 033 /** 034 * Converts a given Rodrigues rotation vector to the equivalent 3D rotation matrix. Hand-made calculation (uses no 035 * library methods). 036 * 037 * @param rv Rodrigues rotation vector 038 * @return the 3D rotation matrix 039 */ 040 public static double[][] toRotationMatrix(double[] rv) { 041 double theta = normL2(rv); 042 double rx = rv[0] / theta; 043 double ry = rv[1] / theta; 044 double rz = rv[2] / theta; 045 // System.out.println("rotation angle1 = " + theta); 046 // System.out.println("rotation axis1 = " + Matrix.toString(new double[] {rx, ry, rz})); 047 double[][] W = { 048 {0, -rz, ry}, 049 {rz, 0, -rx}, 050 {-ry, rx, 0}}; 051 // System.out.println("W = \n" + Matrix.toString(W)); 052 double[][] I = idMatrix(3); 053 double[][] R1 = add(I, multiply(Math.sin(theta), W)); 054 double[][] R2 = multiply(1 - Math.cos(theta), multiply(W, W)); 055 double[][] R = add(R1, R2); 056 return R; 057 } 058 059 /** 060 * Converts a given Rodrigues rotation vector to the equivalent 3D rotation matrix. For comparison, this version 061 * uses Apache Commons Math (ACM). 062 * 063 * @param rv Rodrigues rotation vector 064 * @return the 3D rotation matrix 065 */ 066 static double[][] toRotationMatrixACM(double[] rv) { 067 double angle = normL2(rv); 068 Vector3D axis = new Vector3D(rv); 069 Rotation rotation = new Rotation(axis, angle, RotationConvention.VECTOR_OPERATOR); 070 System.out.println("rotation angle2 = " + rotation.getAngle()); 071 System.out.println("rotation axis2 = " + rotation.getAxis(RotationConvention.VECTOR_OPERATOR)); 072 return rotation.getMatrix(); 073 } 074 075 // ++++++++++++++ Rotation matrix --> Rodrigues vector +++++++++++++++++++ 076 077 /** 078 * Converts a 3D rotation matrix (R) to the equivalent Rodrigues rotation vector. From "Vector Representation of 079 * Rotations", Carlo Tomasi (https://www.cs.duke.edu/courses/fall13/compsci527/notes/rodrigues.pdf). Matlab code: 080 * http://www.cs.duke.edu/courses/fall13/compsci527/notes/rodrigues.m 081 * 082 * @param R a 3D rotation matrix 083 * @return the Rodrigues rotation vector 084 */ 085 public static double[] toRodriguesVector(double[][] R) { 086 // final double eps = EPSILON_DOUBLE; 087 double[] p = { 088 0.5 * (R[2][1] - R[1][2]), 089 0.5 * (R[0][2] - R[2][0]), 090 0.5 * (R[1][0] - R[0][1])}; 091 double s = normL2(p); 092 double c = 0.5 * (Matrix.trace(R) - 1); 093 if (isZero(s)) { // Rotation angle is either 0 or pi 094 if (isZero(c - 1)) { // Case 1: c = 1, Rotation angle is 0 095 return zeroVector(3); 096 } else if (isZero(c + 1)) { // Case 2: c = -1, Rotation angle is pi 097 // find the column of R + I with greatest norm (for better numerical results) 098 double[][] Rp = add(R, idMatrix(3)); 099 double[] v = getMaxColumnVector(Rp); 100 double vn = normL2(v); 101 if (isZero(vn)) { // this shouldn't really happen 102 throw new RuntimeException("R is an inversion, not a rotation"); 103 } 104 double[] u = multiply(1 / vn, v); // unit vector 105 return multiply(Math.PI, normalizeSign(u)); 106 } else { // how can this be? 107 throw new RuntimeException("sin(theta) is zero, bus cos(theta) is neither 1 nor -1!"); 108 } 109 } else { // (s != 0) : rotation strictly between 0 and pi 110 double[] u = multiply(1.0 / s, p); // unit vector 111 double theta = Math.atan2(s, c); 112 return multiply(theta, u); 113 } 114 } 115 116 // http://math.stackexchange.com/questions/83874/efficient-and-accurate-numerical-implementation-of-the-inverse-rodrigues-rotatio 117 118 /** 119 * Converts a 3D rotation matrix (R) to the equivalent Rodrigues rotation vector. For comparison, this version uses 120 * Apache Commons Math (ACM). 121 * 122 * @param R 123 * @return 124 */ 125 static double[] toRodriguesVectorACM(double[][] R) { 126 Rotation rot = new Rotation(R, 0.01); 127 double angle = rot.getAngle(); 128 Vector3D axis = rot.getAxis(RotationConvention.VECTOR_OPERATOR); 129 double[] rv = axis.scalarMultiply(angle / axis.getNorm()).toArray(); 130 return rv; 131 } 132 133 /** 134 * Changes the sign of a unit vector u so that it is on the proper half of the unit sphere. 135 * 136 * @param x unit vector 137 * @return same or inverted unit vector 138 */ 139 private static double[] normalizeSign(double[] x) { 140 if ((x[0] < 0) || 141 (isZero(x[0]) && x[1] < 0) || 142 (isZero(x[0]) && isZero(x[1]) && x[2] < 0)) { 143 return multiply(-1, x); 144 } else { 145 return x; 146 } 147 } 148 149 /** 150 * Returns the column vector of the given matrix with the greatest norm. 151 * 152 * @param A a matrix 153 * @return the maximum-norm column vector 154 */ 155 private static double[] getMaxColumnVector(double[][] A) { 156 final int rows = A.length; 157 final int cols = A[0].length; 158 int maxCol = 0; 159 double maxNorm = Double.NEGATIVE_INFINITY; 160 for (int c = 0; c < cols; c++) { 161 double csum = 0; 162 for (int r = 0; r < rows; r++) { 163 csum = csum + A[r][c] * A[r][c]; 164 } 165 if (csum > maxNorm) { 166 maxNorm = csum; 167 maxCol = c; 168 } 169 } 170 return Matrix.getColumn(A, maxCol); 171 } 172 173 public static final double DefaultOrthogonalityThreshold = 1e-6; 174 175 /** 176 * Checks if the specified matrix is a rotation matrix under the given orthogonality threshold. 177 * 178 * @param R the matrix to be checked 179 * @param threshold the orthogonality threshold 180 * @return 181 */ 182 public static boolean isRotationMatrix(double[][] R, double threshold) { 183 try { 184 Rotation rot = new Rotation(R, threshold); 185 } catch (NotARotationMatrixException e) { 186 return false; 187 } 188 return true; 189 } 190 191 /** 192 * Checks if the specified matrix is a rotation matrix using the default orthogonality threshold 193 * ({@link #DefaultOrthogonalityThreshold}). 194 * 195 * @param R the matrix to be checked 196 * @return 197 */ 198 public static boolean isRotationMatrix(double[][] R) { 199 return isRotationMatrix(R, DefaultOrthogonalityThreshold); 200 } 201 202 /** 203 * Normalized the given angle to [-π,π]. 204 * 205 * @param angle some angle (any finite value) 206 * @return the equivalent angle in [-π,π] 207 */ 208 public static double normalizeAngle(double angle) { 209 // http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/MathUtils.html 210 // return MathUtils.normalizeAngle(angle, 0.0); 211 return angle - TWO_PI * Math.floor((angle + Math.PI) / TWO_PI); 212 } 213 214 /** 215 * Creates a Rodrigues rotation vector from a given 3D rotation axis and angle. The angle (normalized to [0,2π]) 216 * determines the norm of the resulting vector. Use with care, results are not unique! 217 * 218 * @param axis a 3D vector representing the rotation axis 219 * @param theta the rotation angle 220 * @return 221 */ 222 private static double[] makeRodriguesVector(double[] axis, double theta) { 223 double s = normL2(axis); 224 if (Arithmetic.isZero(s)) { 225 throw new IllegalArgumentException("rotation axis vector must have nonzero norm"); 226 } 227 return multiply(theta / s, axis); 228 } 229 230}