001/*******************************************************************************
002 * Permission to use and distribute this software is granted under the BSD 2-Clause
003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved.
005 * Visit https://imagingbook.com for additional details.
006 ******************************************************************************/
007package imagingbook.calibration.zhang.util;
008
009import imagingbook.common.geometry.basic.Pnt2d;
010import imagingbook.common.math.Matrix;
011import imagingbook.common.math.exception.DivideByZeroException;
012import org.apache.commons.math3.complex.Quaternion;
013import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
014import org.apache.commons.math3.linear.Array2DRowRealMatrix;
015import org.apache.commons.math3.linear.MatrixUtils;
016import org.apache.commons.math3.linear.RealMatrix;
017import org.apache.commons.math3.linear.RealVector;
018import org.apache.commons.math3.linear.SingularValueDecomposition;
019
020/**
021 * Utility math methods used for camera calibration.
022 *
023 * @author WB
024 * @version 2022/12/19
025 */
026public abstract class MathUtil {
027
028        private MathUtil() {}
029
030        public static double[] toArray(Pnt2d p) {
031                return new double[] {p.getX(), p.getY()};
032        }
033        
034        public static Pnt2d toPnt2d(double[] xy) {
035                return Pnt2d.from(xy);
036        }
037        
038        public static RealVector crossProduct3x3(RealVector A, RealVector B) {
039                final double[] a = A.toArray();
040                final double[] b = B.toArray();
041                final double[] c = {
042                                a[1] * b[2] - b[1] * a[2],
043                                a[2] * b[0] - b[2] * a[0],
044                                a[0] * b[1] - b[0] * a[1]
045                };
046                return MatrixUtils.createRealVector(c);
047        }
048        
049        public static RealVector getRowPackedVector(RealMatrix A) {
050                double[][] AA = A.getData();
051                double[] V = new double[AA.length * AA[0].length];
052                int k = 0;
053                for (int i = 0; i < AA.length; i++) {
054                        for (int j = 0; j < AA[0].length; j++) {
055                                V[k++] = AA[i][j];
056                        }
057                }
058                return MatrixUtils.createRealVector(V);
059        }
060        
061        public static RealMatrix fromRowPackedVector(RealVector V, int rows, int columns) {
062                double[][] AA = new double[rows][columns];
063                double[] data = V.toArray();
064                int k = 0;
065                for (int i = 0; i < rows; i++) {
066                        for (int j = 0; j < columns; j++) {
067                                AA[i][j] = data[k++];
068                        }
069                }
070                return MatrixUtils.createRealMatrix(AA);
071        }
072
073        /**
074         * Finds a nontrivial solution (x) to the homogeneous linear system A . x = 0 by singular-value decomposition. If A
075         * has more rows than columns, the system of equations is overdetermined. In this case the returned solution
076         * minimizes the residual ||A . x|| in the least-squares sense.
077         *
078         * @param A the original matrix.
079         * @return the solution vector x.
080         */
081        public static RealVector solveHomogeneousSystem(RealMatrix A) {
082                SingularValueDecomposition svd = new SingularValueDecomposition(A);
083                RealMatrix V = svd.getV();
084                // RealVector x = V.getColumnVector(V.getColumnDimension() - 1);
085                // return x;
086                int minIdx = Matrix.idxMin(svd.getSingularValues());
087                return V.getColumnVector(minIdx);
088        }
089
090        /**
091         * Converts a Cartesian vector to an equivalent homogeneous vector by attaching an additional 1-element. The
092         * resulting homogeneous vector is one element longer than the specified Cartesian vector. See also
093         * {@link #toCartesian(double[])}.
094         *
095         * @param ac a Cartesian vector
096         * @return an equivalent homogeneous vector
097         */
098        public static double[] toHomogeneous(double[] ac) {
099                double[] xh = new double[ac.length + 1];
100                for (int i = 0; i < ac.length; i++) {
101                        xh[i] = ac[i];
102                        xh[xh.length - 1] = 1;
103                }
104                return xh;
105        }
106
107        /**
108         * Converts a homogeneous vector to its equivalent Cartesian vector, which is one element shorter. See also
109         * {@link #toHomogeneous(double[])}.
110         *
111         * @param ah a homogeneous vector
112         * @return the equivalent Cartesian vector
113         * @throws DivideByZeroException if the last vector element is zero
114         */
115        public static double[] toCartesian(double[] ah) throws DivideByZeroException {
116                double[] xc = new double[ah.length - 1];
117                final double s = 1 / ah[ah.length - 1];
118                if (!Double.isFinite(s))        // isZero(s)
119                        throw new DivideByZeroException();
120                for (int i = 0; i < ah.length - 1; i++) {
121                        xc[i] = s * ah[i];
122                }
123                return xc;
124        }
125        
126        public static double mean(double[] x) {
127                final int n = x.length;
128                if (n == 0) 
129                        return 0;
130                double sum = 0;
131                for (int i = 0; i < x.length; i++) {
132                        sum = sum + x[i];
133                }
134                return sum / n;
135        }
136        
137        /**
138         * Returns the variance of the specified values.
139         * @param x a sequence of real values 
140         * @return the variance of the values in x (sigma^2)
141         */
142        public static double variance(double[] x) {
143                final int n = x.length;
144                if (n == 0) 
145                        return 0;
146                double sum = 0;
147                double sum2 = 0;
148                for (int i = 0; i < x.length; i++) {
149                        sum = sum + x[i];
150                        sum2 = sum2 + x[i] * x[i];
151                }
152                return (sum2 - (sum * sum) / n) / n;
153        }
154        
155        // ---------------------------------------------------------------
156
157        /**
158         * Converts a {@link Rotation} to a {@link Quaternion}.
159         * @param R a rotation
160         * @return the corresponding quaternion
161         */
162        public static Quaternion toQuaternion(Rotation R) {
163                return new Quaternion(R.getQ0(), R.getQ1(), R.getQ2(), R.getQ3());
164        }
165
166        /**
167         * Converts a {@link Quaternion} to a {@link Rotation}.
168         * @param q a quaternion
169         * @return the associated rotation
170         */
171        public static Rotation toRotation(Quaternion q) {
172                return new Rotation(q.getQ0(), q.getQ1(), q.getQ2(), q.getQ3(), true);
173        }
174
175    /**
176     * Linearly interpolate two 3D {@link Rotation} instances.
177     * @param R0 first rotation
178     * @param R1 second rotation
179     * @param alpha the blending factor in [0,1]
180     * @return the interpolated rotation
181     */
182    public static Rotation Lerp(Rotation R0, Rotation R1, double alpha) {
183        Quaternion qa = toQuaternion(R0);
184        Quaternion qb = toQuaternion(R1);
185        return toRotation(Lerp(qa, qb, alpha));
186    }
187
188    /**
189     * Linearly interpolate two {@link Quaternion} instances.
190     * @param Q0 first quaternion
191     * @param Q1 second quaternion
192     * @param alpha the blending factor in [0,1]
193     * @return the interpolated quaternion
194     */
195    public static Quaternion Lerp(Quaternion Q0, Quaternion Q1, double alpha) {
196        return Quaternion.add(Q0.multiply(1 - alpha), Q1.multiply(alpha));
197    }
198
199    /**
200     * Linearly interpolate two 3D translation vectors.
201     * @param t0 first translation vector
202     * @param t1 second translation vector
203     * @param alpha the blending factor in [0,1]
204     * @return the interpolated translation vector
205     */
206    public static double[] Lerp(double[] t0, double[] t1, double alpha) {
207        double[] t01 = t0.clone();
208        for (int i = 0; i < t01.length; i++) {
209            t01[i] = (1 - alpha) * t0[i] + alpha * t1[i];
210        }
211        return t01;
212    }
213
214        // ---------------------------------------------------------------
215
216        /**
217         * Calculates the 'inverse condition number' (RCOND() in Matlab)
218         * of the given matrix (0,...,1, ideally close to 1).
219         * @param A the matrix
220         * @return the inverse condition number
221         */
222        public static double inverseConditionNumber(double[][] A) {
223                RealMatrix M = new Array2DRowRealMatrix(A);
224                SingularValueDecomposition svd = new SingularValueDecomposition(M);
225                return svd.getInverseConditionNumber();
226        }
227
228
229    // ---------------------------------------------------------------
230        
231        // /**
232        //  * For testing only.
233        //  * @param args ignored
234        //  */
235        // public static void main (String[] args) {
236        //      //double[][] A = {{1, 2, 3}, {4, 5, 6}, {9, 8, 0}};
237        //      double[][] A = {{1, 2, 3}, {4, 5, 6}, {9, 8, 0}, {-3, 7, 2}};
238        //      {
239        //              RealMatrix AM = MatrixUtils.createRealMatrix(A);
240        //              RealVector x = solveHomogeneousSystem(AM);
241        //              System.out.println("Solution x = " + x.toString());
242        //      }
243        //      // Solution x = {0.649964237; -0.7338780288; 0.1974070146}
244        // }
245}