001/******************************************************************************* 002 * Permission to use and distribute this software is granted under the BSD 2-Clause 003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved. 005 * Visit https://imagingbook.com for additional details. 006 ******************************************************************************/ 007package imagingbook.calibration.zhang; 008 009import imagingbook.common.geometry.basic.Pnt2d; 010import org.apache.commons.math3.analysis.MultivariateMatrixFunction; 011import org.apache.commons.math3.analysis.MultivariateVectorFunction; 012 013import java.util.Arrays; 014 015/** 016 * Nonlinear optimizer based on the Levenberg-Marquart method, where the Jacobian matrix is calculated numerically 017 * (i.e., by estimating the first partial derivatives from finite differences). The advantage is that the calculation of 018 * the Jacobian is independent of the calibration model, while performance and runtime are similar to the analytic 019 * version (see {@link NonlinearOptimizerAnalytic}). 020 * 021 * @author WB 022 */ 023public class NonlinearOptimizerNumeric extends NonlinearOptimizer { 024 025 NonlinearOptimizerNumeric(Pnt2d[] modelPts, Pnt2d[][] obsPts) { 026 super(modelPts, obsPts); 027 } 028 029 @Override 030 MultivariateVectorFunction makeValueFun() { 031 return new ValueFun(); 032 } 033 034 @Override 035 MultivariateMatrixFunction makeJacobianFun() { 036 return new JacobianFun(); 037 } 038 039 private class JacobianFun implements MultivariateMatrixFunction { 040 041 /** 042 * Calculates a "stacked" Jacobian matrix with 2MN rows and K = 7 + 6M columns (for M views with N points each, 043 * K parameters). For example, with M = 5 views and N = 256 points each, J is of size 2560 × 37. Each pair of 044 * rows in the Jacobian corresponds to one point. THIS VERSION only calculates single blocks of the Jacobian! 045 */ 046 @Override 047 public double[][] value(double[] params) { 048 final int K = params.length; 049 double[][] J = new double[2 * M * N][K]; // the Jacobian matrix (initialized to zeroes!) 050 double[] refValues = new double[2 * M * N]; // values obtained with undisturbed parameters 051 052 double[] a = Arrays.copyOfRange(params, 0, camParLength); // camera parameters 053 Camera camOrig = new Camera(a); 054 055 // Step 0: calculate all 2MN reference output values (for undisturbed parameters) 056 057 for (int r = 0, i = 0; i < M; i++) { // for all views, r = row 058 int m = camParLength + viewParLength * i; 059 double[] w = Arrays.copyOfRange(params, m, m + viewParLength); 060 ViewTransform view = new ViewTransform(w); 061 for (int j = 0; j < N; j++) { // for all model points: calculate reference values 062 double[] uv = camOrig.project(view, modelPts[j]); 063 refValues[r + 0] = uv[0]; 064 refValues[r + 1] = uv[1]; 065 r = r + 2; 066 } 067 } 068 069 // Step 1: calculate the leftmost (green) block of J associated with camera intrinsics 070 071 for (int k = 0; k < a.length; k++) { // for all camera parameters 072 double ak = a[k]; // keep original parameter value 073 double delta = estimateDelta(ak); 074 a[k] = a[k] + delta; // modify parameter s_k 075 Camera camMod = new Camera(a); // modified camera 076 077 for (int r = 0, i = 0; i < M; i++) { // for all views, r = row 078 int m = camParLength + i * viewParLength; 079 double[] w = Arrays.copyOfRange(params, m, m + viewParLength); 080 ViewTransform view = new ViewTransform(w); 081 for (int j = 0; j < N; j++) { // for all model points: calculate disturbed value 082 Pnt2d Pj = modelPts[j]; 083 double[] uvMod = camMod.project(view, Pj); 084 J[r + 0][k] = (uvMod[0] - refValues[r + 0]) / delta; // dX 085 J[r + 1][k] = (uvMod[1] - refValues[r + 1]) / delta; // dY 086 r = r + 2; 087 } 088 } 089 a[k] = ak; // return parameter s_k to original 090 } 091 092 // Step 2: calculate the diagonal blocks, one for each view 093 094 for (int i = 0; i < M; i++) { // for all views/blocks 095 final int start = camParLength + i * viewParLength; 096 double[] w = Arrays.copyOfRange(params, start, start + viewParLength); 097 final int c = a.length + i * w.length; // leftmost matrix column of block i 098 for (int k = 0; k < w.length; k++) { // for all parameters in w 099 double wk = w[k]; // keep original parameter w_k 100 double delta = estimateDelta(wk); 101 w[k] = w[k] + delta; // modify parameter w_k 102 ViewTransform view = new ViewTransform(w); 103 int r = 2 * i * N; // row 104 for (int j = 0; j < N; j++) { // for all model points: calculate disturbed value 105 Pnt2d Pj = modelPts[j]; 106 double[] uvMod = camOrig.project(view, Pj); 107 J[r + 0][c + k] = (uvMod[0] - refValues[r + 0]) / delta; // dX 108 J[r + 1][c + k] = (uvMod[1] - refValues[r + 1]) / delta; // dY 109 r = r + 2; 110 } 111 w[k] = wk; // w[k] - DELTA; // return parameter w_k to original 112 } 113 } 114 115// long endtime = System.nanoTime(); 116// System.out.println("time diff = " + (endtime - starttime) + " ns"); 117// System.out.println(NonlinearOptimizerNumeric.class.getSimpleName() + 118// ": Jacobian inverse condition number = " + MathUtil.inverseConditionNumber(J)); 119 return J; 120 } 121 122 // THIS VERSION calculates all entries of the Jacobian (NOT USED)! 123 124 @Deprecated 125 @SuppressWarnings("unused") 126 public double[][] value(double[] params, boolean dummy) { 127 //long starttime = System.nanoTime(); 128 //System.out.println("getJacobianMatrix - NUMERICAL"); 129 // M = number of views, N = number of model points 130 double[][] J = new double[2 * M * N][params.length]; // the Jacobian matrix 131 double[] refValues = new double[2 * M * N]; // function values obtained with undisturbed parameters 132 133 double[] s = Arrays.copyOfRange(params, 0, camParLength); 134 Camera cam = new Camera(s); 135 136 // Step 0: calculate all 2MN reference output values (for undisturbed parameters) 137 138 for (int row = 0, m = 0; m < M; m++) { // for all views 139 int start = camParLength + m * viewParLength; 140 double[] w = Arrays.copyOfRange(params, start, start + viewParLength); 141 ViewTransform view = new ViewTransform(w); 142 for (int j = 0; j < N; j++) { // for all model points: calculate reference values 143 double[] uv = cam.project(view, modelPts[j]); 144 refValues[row + 0] = uv[0]; 145 refValues[row + 1] = uv[1]; 146 row = row + 2; 147 } 148 } 149 150 // Step 1: calculate all entries of the Jacobian (brute force!) 151 152 for (int k = 0; k < params.length; k++) { // for ALL parameters 153 int col = k; 154 // calculate step width and modify the parameter vector c: 155 double pk = params[k]; 156 double delta = estimateDelta(pk); 157 params[k] = params[k] + delta; // modify parameter c_k 158 159 double[] smod = Arrays.copyOfRange(params, 0, camParLength); 160 Camera camMod = new Camera(smod); // modified camera 161 162 for (int row = 0, m = 0; m < M; m++) { // for all views 163 int start = camParLength + m * viewParLength; 164 double[] w = Arrays.copyOfRange(params, start, start + viewParLength); 165 ViewTransform view = new ViewTransform(w); 166 for (int n = 0; n < N; n++) { // for all model points: calculate disturbed value 167 Pnt2d Pj = modelPts[n]; 168 double[] uvMod = camMod.project(view, Pj); 169 J[row + 0][col] = (uvMod[0] - refValues[row + 0]) / delta; // du 170 J[row + 1][col] = (uvMod[1] - refValues[row + 1]) / delta; // dv 171 row = row + 2; 172 } 173 } 174 params[k] = pk; 175 } 176 177 long endtime = System.nanoTime(); 178// System.out.println("time diff = " + (endtime - starttime) + " ns"); 179// System.out.println(this.getClass().getSimpleName() + 180// ": Jacobian inverse condition number = " + MathUtil.inverseConditionNumber(J)); 181 return J; 182 } 183 184 } 185 186 /** 187 * Returns a positive delta value adapted to the magnitude of the parameter x 188 * 189 * @param x 190 * @return 191 */ 192 private double estimateDelta(double x) { 193 final double eps = 1.5e-8; // = sqrt(2.2 * 10^{-16}) 194 double dx = eps * Math.max(Math.abs(x), 1); // dx >= eps 195 // avoid numerical truncation problems (add and subtract again) - 196 // not sure if this survives the compiler !? 197 double tmp = x + dx; 198 return tmp - x; 199 } 200 201} 202 203/* 204 205Benchmarks for calculating the Jacobian: 206 207Numeric/Block 208time diff = 3767805 ns 209time diff = 2845680 ns 210time diff = 3000871 ns 211time diff = 2911613 ns 212time diff = 3284195 ns 213time diff = 1581763 ns 214time diff = 1582074 ns 215 216Numeric/Full 217time diff = 9383902 ns 218time diff = 5680786 ns 219time diff = 3523978 ns 220time diff = 5784972 ns 221time diff = 3406730 ns 222time diff = 3463022 ns 223time diff = 3566275 ns 224 225Analytic 226time diff = 7060397 ns 227time diff = 1106239 ns 228time diff = 1095976 ns 229time diff = 1035330 ns 230time diff = 1041550 ns 231time diff = 1043416 ns 232time diff = 1073895 ns 233 234 235 236 237*/