001/******************************************************************************* 002 * Permission to use and distribute this software is granted under the BSD 2-Clause 003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved. 005 * Visit https://imagingbook.com for additional details. 006 ******************************************************************************/ 007package imagingbook.calibration.zhang; 008 009import imagingbook.common.geometry.basic.Pnt2d; 010import org.apache.commons.math3.analysis.MultivariateMatrixFunction; 011import org.apache.commons.math3.analysis.MultivariateVectorFunction; 012import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory; 013import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum; 014import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer; 015import org.apache.commons.math3.fitting.leastsquares.MultivariateJacobianFunction; 016import org.apache.commons.math3.linear.ArrayRealVector; 017import org.apache.commons.math3.linear.RealVector; 018 019import java.util.Arrays; 020 021/** 022 * Abstract super-class for non-linear optimizers used for final, overall optimization of calibration parameters. The 023 * actual optimization is performed by the sub-classes. 024 * 025 * @author WB 026 */ 027public abstract class NonlinearOptimizer { 028 029 private static int maxEvaluations = 1000; 030 private static int maxIterations = 1000; 031 032 final Pnt2d[] modelPts; 033 final Pnt2d[][] obsPts; 034 final int M; // number of views 035 final int N; // number of model points 036 int camParLength; // number of camera parameters (7) 037 int viewParLength; // number of view parameters (6) 038 039 private Camera initCam = null; 040 private Camera finalCamera = null; 041 private ViewTransform[] initViews = null; 042 private ViewTransform[] finalViews = null; 043 044 NonlinearOptimizer(Pnt2d[] modelPts, Pnt2d[][] obsPts) { 045 this.modelPts = modelPts; 046 this.obsPts = obsPts; 047 this.M = obsPts.length; 048 this.N = modelPts.length; 049 } 050 051 /** 052 * Performs Levenberg-Marquardt non-linear optimization to get better estimates of the parameters. 053 * 054 * @param initCam the initial camera parameters 055 * @param initViews the initial view transforms 056 */ 057 void optimize(Camera initCam, ViewTransform[] initViews) { 058 this.initCam = initCam; 059 this.initViews = initViews; 060 this.camParLength = initCam.getParameterVector().length; 061 this.viewParLength = initViews[0].getParameters().length; 062 063 MultivariateVectorFunction V = makeValueFun(); 064 MultivariateMatrixFunction J = makeJacobianFun(); 065 066 RealVector start = makeInitialParameters(); 067 RealVector observed = makeObservedVector(); 068 069 MultivariateJacobianFunction model = LeastSquaresFactory.model(V, J); 070 LevenbergMarquardtOptimizer lm = new LevenbergMarquardtOptimizer(); 071 Optimum result = lm.optimize(LeastSquaresFactory.create( 072 model, 073 observed, 074 start, 075 null, 076 maxEvaluations, 077 maxIterations)); 078 079// System.out.println(NonlinearOptimizer.class.getSimpleName() + "; iterations = " + result.getIterations()); 080 updateEstimates(result.getPoint()); 081 } 082 083 /** 084 * To be implemented by subclasses. 085 * 086 * @return a vector value function 087 */ 088 abstract MultivariateVectorFunction makeValueFun(); 089 090 /** 091 * To be implemented by subclasses. 092 * 093 * @return a Jacobian function 094 */ 095 abstract MultivariateMatrixFunction makeJacobianFun(); 096 097 098 /** 099 * Common value function for optimizers defined in sub-classes. 100 */ 101 class ValueFun implements MultivariateVectorFunction { 102 103 @Override 104 public double[] value(double[] params) { 105 final double[] a = Arrays.copyOfRange(params, 0, camParLength); 106 final Camera cam = new Camera(a); 107 final double[] Y = new double[2 * M * N]; 108 int c = 0; 109 for (int m = 0; m < M; m++) { 110 int q = camParLength + m * viewParLength; 111 double[] w = Arrays.copyOfRange(params, q, q + viewParLength); 112 ViewTransform view = new ViewTransform(w); 113 for (int n = 0; n < N; n++) { 114 double[] uv = cam.project(view, modelPts[n]); 115 Y[c * 2 + 0] = uv[0]; 116 Y[c * 2 + 1] = uv[1]; 117 c = c + 1; 118 } 119 } 120 return Y; 121 } 122 } 123 124 // --------------------------------------------------------------------- 125 126 private RealVector makeInitialParameters() { 127 double[] s = initCam.getParameterVector(); 128 double[] c = new double[s.length + M * viewParLength]; 129 130 // insert camera parameters at beginning of c 131 System.arraycopy(s, 0, c, 0, s.length); 132 133 // insert M view parameters 134 int start = s.length; 135 for (int i = 0; i < M; i++) { 136 double[] w = initViews[i].getParameters(); 137 System.arraycopy(w, 0, c, start, w.length); 138 start = start + w.length; 139 } 140 return new ArrayRealVector(c); 141 } 142 143 144 /** 145 * Stack the observed image coordinates of the calibration pattern points into a vector. 146 * 147 * @return the observed vector 148 */ 149 RealVector makeObservedVector() { 150 double[] obs = new double[M * N * 2]; 151 for (int i = 0, k = 0; i < M; i++) { 152 for (int j = 0; j < N; j++, k++) { 153 obs[k * 2 + 0] = obsPts[i][j].getX(); 154 obs[k * 2 + 1] = obsPts[i][j].getY(); 155 } 156 } 157 // obs = [u_{0,0}, v_{0,0}, u_{0,1}, v_{0,1}, ..., u_{M-1,N-1}, v_{M-1,N-1}] 158 return new ArrayRealVector(obs); 159 } 160 161 private void updateEstimates(RealVector parameters) { 162 double[] c = parameters.toArray(); 163 double[] s = Arrays.copyOfRange(c, 0, camParLength); 164 finalCamera = new Camera(s); 165 166 finalViews = new ViewTransform[M]; 167 int start = s.length; 168 for (int i = 0; i < M; i++) { 169 double[] w = Arrays.copyOfRange(c, start, start + viewParLength); 170 finalViews[i] = new ViewTransform(w); 171 start = start + w.length; 172 } 173 } 174 175 /** 176 * Returns the optimized camera parameters. 177 * 178 * @return the optimized camera parameters 179 */ 180 Camera getFinalCamera() { 181 return finalCamera; 182 } 183 184 /** 185 * Returns the optimized view parameters. 186 * 187 * @return the optimized view parameters 188 */ 189 ViewTransform[] getFinalViews() { 190 return finalViews; 191 } 192 193}