001/*******************************************************************************
002 * Permission to use and distribute this software is granted under the BSD 2-Clause
003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved.
005 * Visit https://imagingbook.com for additional details.
006 ******************************************************************************/
007package imagingbook.calibration.zhang;
008
009import imagingbook.calibration.zhang.util.MathUtil;
010import imagingbook.common.geometry.basic.Pnt2d;
011import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
012import org.apache.commons.math3.analysis.MultivariateVectorFunction;
013import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
014import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
015import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
016import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
017import org.apache.commons.math3.linear.MatrixUtils;
018import org.apache.commons.math3.linear.RealMatrix;
019import org.apache.commons.math3.linear.RealVector;
020
021/**
022 * This class defines methods for estimating the homography (projective) transformation between pairs of 2D point sets.
023 *
024 * @author WB
025 */
026public class HomographyEstimator {
027
028        public static int MaxLmEvaluations = 1000;
029        public static int MaxLmIterations = 1000;
030
031        private final boolean normalizePointCoordinates;
032        private final boolean doNonlinearRefinement;
033
034        // ------------------------------------------------------------
035
036        public HomographyEstimator() {
037                this(true, true);
038        }
039
040        public HomographyEstimator(boolean normalizePointCoordinates, boolean doNonlinearRefinement) {
041                this.normalizePointCoordinates = normalizePointCoordinates;
042                this.doNonlinearRefinement = doNonlinearRefinement;
043        }
044
045        // ------------------------------------------------------------
046
047        /**
048         * Estimates the homographies between a fixed set of 2D model points and multiple observations (image point sets).
049         * The correspondence between the points is assumed to be known.
050         *
051         * @param modelPts a sequence of 2D points on the model (calibration target)
052         * @param obsPoints a sequence 2D image point sets (one set per view).
053         * @return the sequence of estimated homographies (3 x 3 matrices), one for each view
054         */
055        public RealMatrix[] estimateHomographies(Pnt2d[] modelPts, Pnt2d[][] obsPoints) {
056                final int M = obsPoints.length;
057                RealMatrix[] homographies = new RealMatrix[M];
058                for (int i = 0; i < M; i++) {
059                        RealMatrix Hinit = estimateHomography(modelPts, obsPoints[i]);
060                        RealMatrix H = doNonlinearRefinement ?
061                                        refineHomography(Hinit, modelPts, obsPoints[i]) : Hinit;
062                        homographies[i] = H;
063                }
064                return homographies;
065        }
066
067        /**
068         * Estimates the homography (projective) transformation from two given 2D point sets. The correspondence between the
069         * points is assumed to be known.
070         *
071         * @param ptsA the 1st sequence of 2D points
072         * @param ptsB the 2nd sequence of 2D points
073         * @return the estimated homography (3 x 3 matrix)
074         */
075        public RealMatrix estimateHomography(Pnt2d[] ptsA, Pnt2d[] ptsB) {
076                int n = ptsA.length;
077
078                RealMatrix Na = (normalizePointCoordinates) ? getNormalisationMatrix(ptsA) : MatrixUtils.createRealIdentityMatrix(3);
079                RealMatrix Nb = (normalizePointCoordinates) ? getNormalisationMatrix(ptsB) : MatrixUtils.createRealIdentityMatrix(3);
080                RealMatrix M = MatrixUtils.createRealMatrix(n * 2, 9);
081
082                for (int j = 0, r = 0; j < ptsA.length; j++) {
083                        final double[] pA = transform(MathUtil.toArray(ptsA[j]), Na);
084                        final double[] pB = transform(MathUtil.toArray(ptsB[j]), Nb);
085                        final double xA = pA[0];
086                        final double yA = pA[1];
087                        final double xB = pB[0];
088                        final double yB = pB[1];
089                        M.setRow(r + 0, new double[]{xA, yA, 1, 0, 0, 0, -(xA * xB), -(yA * xB), -(xB)});
090                        M.setRow(r + 1, new double[]{0, 0, 0, xA, yA, 1, -(xA * yB), -(yA * yB), -(yB)});
091                        r = r + 2;
092                }
093
094                // find h, such that M . h = 0:
095                double[] h = MathUtil.solveHomogeneousSystem(M).toArray();
096
097                // assemble homography matrix H from h:
098                RealMatrix H = MatrixUtils.createRealMatrix(new double[][]
099                                {{h[0], h[1], h[2]},
100                                                {h[3], h[4], h[5]},
101                                                {h[6], h[7], h[8]}});
102
103                // de-normalize the homography
104                H = MatrixUtils.inverse(Nb).multiply(H).multiply(Na);
105
106                // rescale M such that H[2][2] = 1 (unless H[2][2] close to 0)
107                if (Math.abs(H.getEntry(2, 2)) > 10e-8) {
108                        H = H.scalarMultiply(1.0 / H.getEntry(2, 2));
109                }
110
111                return doNonlinearRefinement ? refineHomography(H, ptsA, ptsB) : H;
112        }
113
114
115        /**
116         * Refines the initial homography by non-linear (Levenberg-Marquart) optimization.
117         *
118         * @param Hinit the initial (estimated) homography matrix
119         * @param pntsA the 1st sequence of 2D points
120         * @param pntsB the 2nd sequence of 2D points
121         * @return the refined homography matrix
122         */
123        public RealMatrix refineHomography(RealMatrix Hinit, Pnt2d[] pntsA, Pnt2d[] pntsB) {
124                final int M = pntsA.length;
125                double[] observed = new double[2 * M];
126                for (int i = 0; i < M; i++) {
127                        observed[i * 2 + 0] = pntsB[i].getX();
128                        observed[i * 2 + 1] = pntsB[i].getY();
129                }
130                MultivariateVectorFunction value = getValueFunction(pntsA);
131                MultivariateMatrixFunction jacobian = getJacobianFunction(pntsA);
132
133                LeastSquaresProblem problem = LeastSquaresFactory.create(
134                                LeastSquaresFactory.model(value, jacobian),
135                                MatrixUtils.createRealVector(observed),
136                                MathUtil.getRowPackedVector(Hinit),
137                                null,  // ConvergenceChecker
138                                MaxLmEvaluations,
139                                MaxLmIterations);
140
141                LevenbergMarquardtOptimizer lm = new LevenbergMarquardtOptimizer();
142                Optimum result = lm.optimize(problem);
143
144                RealVector optimum = result.getPoint();
145                RealMatrix Hopt = MathUtil.fromRowPackedVector(optimum, 3, 3);
146                int iterations = result.getIterations();
147                if (iterations >= MaxLmIterations) {
148                        throw new RuntimeException("refineHomography(): max. number of iterations exceeded");
149                }
150                // System.out.println("LM optimizer iterations " + iterations);
151
152                return Hopt.scalarMultiply(1.0 / Hopt.getEntry(2, 2));
153        }
154
155
156        private MultivariateVectorFunction getValueFunction(final Pnt2d[] X) {
157                // System.out.println("MultivariateVectorFunction getValueFunction");
158                return new MultivariateVectorFunction() {
159                        public double[] value(double[] h) {
160
161                                final double[] Y = new double[X.length * 2];
162                                for (int j = 0; j < X.length; j++) {
163                                        final double x = X[j].getX();
164                                        final double y = X[j].getY();
165                                        final double w = h[6] * x + h[7] * y + h[8];
166                                        Y[j * 2 + 0] = (h[0] * x + h[1] * y + h[2]) / w;
167                                        Y[j * 2 + 1] = (h[3] * x + h[4] * y + h[5]) / w;
168                                }
169                                return Y;
170                        }
171                };
172        }
173
174        protected MultivariateMatrixFunction getJacobianFunction(final Pnt2d[] X) {
175                return new MultivariateMatrixFunction() {
176                        public double[][] value(double[] h) {
177                                final double[][] J = new double[2 * X.length][];
178                                for (int i = 0; i < X.length; i++) {
179                                        final double x = X[i].getX();
180                                        final double y = X[i].getY();
181
182                                        final double w = h[6] * x + h[7] * y + h[8];
183                                        final double w2 = w * w;
184
185                                        final double sx = h[0] * x + h[1] * y + h[2];
186                                        J[2 * i + 0] = new double[]{x / w, y / w, 1 / w, 0, 0, 0, -sx * x / w2, -sx * y / w2, -sx / w2};
187
188                                        final double sy = h[3] * x + h[4] * y + h[5];
189                                        J[2 * i + 1] = new double[]{0, 0, 0, x / w, y / w, 1 / w, -sy * x / w2, -sy * y / w2, -sy / w2};
190                                }
191                                return J;
192                        }
193                };
194        }
195
196        static double[] transform(double[] p, RealMatrix M3x3) {
197                if (p.length != 2) {
198                        throw new IllegalArgumentException("transform(): vector p must be of length 2 but is " + p.length);
199                }
200                double[] pA = MathUtil.toHomogeneous(p);
201                double[] pAt = M3x3.operate(pA);
202                return MathUtil.toCartesian(pAt); // need to de-homogenize, since pAt[2] == 1?
203        }
204
205        private RealMatrix getNormalisationMatrix(Pnt2d[] pnts) {
206                final int N = pnts.length;
207                double[] x = new double[N];
208                double[] y = new double[N];
209
210                for (int i = 0; i < N; i++) {
211                        x[i] = pnts[i].getX();
212                        y[i] = pnts[i].getY();
213                }
214
215                // calculate the means in x/y
216                double meanx = MathUtil.mean(x);
217                double meany = MathUtil.mean(y);
218
219                // calculate the variances in x/y
220                double varx = MathUtil.variance(x);
221                double vary = MathUtil.variance(y);
222
223                double sx = Math.sqrt(2 / varx);
224                double sy = Math.sqrt(2 / vary);
225
226                RealMatrix matrixA = MatrixUtils.createRealMatrix(new double[][]{
227                                {sx, 0, -sx * meanx},
228                                {0, sy, -sy * meany},
229                                {0, 0, 1}});
230
231                return matrixA;
232        }
233
234}