001/******************************************************************************* 002 * Permission to use and distribute this software is granted under the BSD 2-Clause 003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved. 005 * Visit https://imagingbook.com for additional details. 006 ******************************************************************************/ 007package imagingbook.calibration.zhang; 008 009import imagingbook.calibration.zhang.util.MathUtil; 010import imagingbook.common.math.Matrix; 011import org.apache.commons.math3.linear.CholeskyDecomposition; 012import org.apache.commons.math3.linear.MatrixUtils; 013import org.apache.commons.math3.linear.RealMatrix; 014 015/** 016 * This class defines methods for estimating the intrinsic camera parameters from multiple homographies. Alternative 017 * versions are provided (only one is actually used though). 018 * 019 * @author WB 020 */ 021public class CameraIntrinsicsEstimator { 022 023 /** 024 * Version 1 (Zhang's original closed form solution). Estimates the the intrinsic camera parameters from multiple 025 * homographies. 026 * 027 * @param homographies a set of homography matrices 028 * @return the estimated 3 x 3 intrinsic transformation matrix 029 */ 030 protected RealMatrix getCameraIntrinsicsZhang1(RealMatrix[] homographies) { 031 final int M = homographies.length; 032 int rows = 2 * M; 033 double[][] V = new double[rows][]; 034 035 for (int i = 0; i < M; i++) { 036 RealMatrix H = homographies[i]; 037 V[2*i] = getVpq(H, 0, 1); // v01 038 V[2*i + 1] = Matrix.subtract(getVpq(H, 0, 0), getVpq(H, 1, 1)); // v00-v11 039 } 040 041 if (M == 2) { 042 V[V.length - 1] = new double[] { 0, 1, 0, 0, 0, 0 }; 043 } 044 045 RealMatrix VM = MatrixUtils.createRealMatrix(V); 046// MathUtil.print("estimateIntrinsics: V = ", VM);//WB 047 048 double[] b = MathUtil.solveHomogeneousSystem(VM).toArray(); // solve VM.b=0 049 050 final double vc = (b[1] * b[3] - b[0] * b[4]) / (b[0] * b[2] - b[1] * b[1]); 051 final double lambda = b[5] - (b[3] * b[3] + vc * (b[1] * b[3] - b[0] * b[4])) / b[0]; 052 final double alpha = Math.sqrt(lambda / b[0]); 053 final double beta = Math.sqrt(lambda * b[0] / (b[0] * b[2] - b[1] * b[1])); 054 final double gamma = -b[1] * alpha * alpha * beta / lambda; 055 final double uc = gamma * vc / alpha - b[3] * alpha * alpha / lambda; // PAMI paper = WRONG! 056 057 RealMatrix A = MatrixUtils.createRealMatrix(new double[][] { 058 { alpha, gamma, uc }, 059 { 0, beta, vc }, 060 { 0, 0, 1 } 061 }); 062 063 return A; 064 } 065 066 /** 067 * Version 2 (Zhang's corrected closed form solution). Estimates the the intrinsic camera parameters from multiple 068 * homographies. 069 * 070 * @param homographies a set of homography matrices 071 * @return the estimated 3 x 3 intrinsic transformation matrix 072 */ 073 protected RealMatrix getCameraIntrinsicsZhang2(RealMatrix[] homographies) { 074 final int M = homographies.length; 075 int rows = 2 * M; 076 double[][] V = new double[rows][]; 077 078 for (int i = 0; i < M; i++) { 079 RealMatrix H = homographies[i]; 080 V[2*i] = getVpq(H, 0, 1); // v01 081 V[2*i + 1] = Matrix.subtract(getVpq(H, 0, 0), getVpq(H, 1, 1)); // v00-v11 082 } 083 084 if (M == 2) { 085 V[V.length - 1] = new double[] { 0, 1, 0, 0, 0, 0 }; 086 } 087 088 RealMatrix VM = MatrixUtils.createRealMatrix(V); 089 double[] b = MathUtil.solveHomogeneousSystem(VM).toArray(); // solve VM.b=0 090 091 final double vc = (b[1] * b[3] - b[0] * b[4]) / (b[0] * b[2] - b[1] * b[1]); 092 final double lambda = b[5] - (b[3] * b[3] + vc * (b[1] * b[3] - b[0] * b[4])) / b[0]; 093 final double alpha = Math.sqrt(lambda / b[0]); 094 final double beta = Math.sqrt(lambda * b[0] / (b[0] * b[2] - b[1] * b[1])); 095 final double gamma = -b[1] * alpha * alpha * beta / lambda; 096 final double uc = gamma * vc / beta - b[3] * alpha * alpha / lambda; // beta! 1998 report seems correct! 097 098 RealMatrix A = MatrixUtils.createRealMatrix(new double[][] { 099 { alpha, gamma, uc }, 100 { 0, beta, vc }, 101 { 0, 0, 1 } 102 }); 103 104 return A; 105 } 106 107 /** 108 * Version 3 (WB's closed form solution). Estimates the the intrinsic camera parameters from multiple homographies. 109 * 110 * @param homographies a set of homography matrices 111 * @return the estimated 3 x 3 intrinsic transformation matrix 112 */ 113 protected RealMatrix getCameraIntrinsicsZhang3(RealMatrix[] homographies) { 114 final int M = homographies.length; 115 int rows = 2 * M; 116 double[][] V = new double[rows][]; 117 118 for (int i = 0; i < M; i++) { 119 RealMatrix H = homographies[i]; 120 V[2*i] = getVpq(H, 0, 1); // v01 121 V[2*i + 1] = Matrix.subtract(getVpq(H, 0, 0), getVpq(H, 1, 1)); // v00-v11 122 } 123 124 if (M == 2) { 125 V[V.length - 1] = new double[] { 0, 1, 0, 0, 0, 0 }; 126 } 127 128 RealMatrix VM = MatrixUtils.createRealMatrix(V); 129 double[] b = MathUtil.solveHomogeneousSystem(VM).toArray(); // solve VM.b=0 130 131 final double w = b[0]*b[2]*b[5] - b[1]*b[1]*b[5] - b[0]*b[4]*b[4] + 2*b[1]*b[3]*b[4] - b[2]*b[3]*b[3]; 132 final double d = 133 b[0] * b[2] - b[1] * b[1]; 134 final double uc = 135 (b[1] * b[4] - b[2] * b[3]) / d; 136 final double vc = 137 (b[1] * b[3] - b[0] * b[4]) / d; 138 final double alpha = 139 Math.sqrt(w / (d * b[0])); 140 final double beta = 141 Math.sqrt(w / (d * d) * b[0]); 142 final double gamma = 143 Math.sqrt(w / (d * d * b[0])) * b[1]; 144 145 RealMatrix A = MatrixUtils.createRealMatrix(new double[][] { 146 { alpha, gamma, uc }, 147 { 0, beta, vc }, 148 { 0, 0, 1 } 149 }); 150 151 return A; 152 } 153 154 155 /** 156 * Final version by WB (this version is used by default). Estimates the intrinsic camera parameters from multiple 157 * homographies using a Cholesky decomposition. 158 * 159 * @param homographies a set of homography matrices 160 * @return the estimated 3 x 3 intrinsic transformation matrix 161 */ 162 protected RealMatrix getCameraIntrinsics(RealMatrix[] homographies) { 163 final int M = homographies.length; 164 int rows = 2 * M; 165 double[][] V = new double[rows][]; 166 167 for (int i = 0; i < M; i++) { 168 RealMatrix H = homographies[i]; 169 V[2*i] = getVpq(H, 0, 1); // v01 170 V[2*i + 1] = Matrix.subtract(getVpq(H, 0, 0), getVpq(H, 1, 1)); // v00-v11 171 } 172 173 if (M == 2) { 174 V[V.length - 1] = new double[] { 0, 1, 0, 0, 0, 0 }; 175 } 176 177 RealMatrix VM = MatrixUtils.createRealMatrix(V); 178// MathUtil.print("estimateIntrinsics: V = ", VM);//WB 179 180 double[] b = MathUtil.solveHomogeneousSystem(VM).toArray(); // solve VM.b=0 181 182 RealMatrix B = MatrixUtils.createRealMatrix(new double[][] 183 {{b[0], b[1], b[3]}, 184 {b[1], b[2], b[4]}, 185 {b[3], b[4], b[5]}}); 186 187 if (B.getEntry(0, 0) < 0 || B.getEntry(1, 1) < 0 || B.getEntry(2, 2) < 0) { 188 B = B.scalarMultiply(-1); // make sure B is positive definite 189 } 190 191 CholeskyDecomposition cd = new CholeskyDecomposition(B); 192 RealMatrix L = cd.getL(); 193 RealMatrix A = MatrixUtils.inverse(L).transpose().scalarMultiply(L.getEntry(2, 2)); 194 return A; 195 } 196 197// private double[] getVpq(RealMatrix H, int p, int q) { 198// H = H.transpose(); 199// final double[] vij = new double[] { 200// H.getEntry(p, 0) * H.getEntry(q, 0), 201// H.getEntry(p, 0) * H.getEntry(q, 1) + H.getEntry(p, 1) * H.getEntry(q, 0), 202// H.getEntry(p, 1) * H.getEntry(q, 1), 203// H.getEntry(p, 2) * H.getEntry(q, 0) + H.getEntry(p, 0) * H.getEntry(q, 2), 204// H.getEntry(p, 2) * H.getEntry(q, 1) + H.getEntry(p, 1) * H.getEntry(q, 2), 205// H.getEntry(p, 2) * H.getEntry(q, 2) 206// }; 207// return vij; 208// } 209 210 // version without transpose 211 private double[] getVpq(RealMatrix H, int p, int q) { 212 final double[] vpq = new double[] { 213 H.getEntry(0, p) * H.getEntry(0, q), 214 H.getEntry(0, p) * H.getEntry(1, q) + H.getEntry(1, p) * H.getEntry(0, q), 215 H.getEntry(1, p) * H.getEntry(1, q), 216 H.getEntry(2, p) * H.getEntry(0, q) + H.getEntry(0, p) * H.getEntry(2, q), 217 H.getEntry(2, p) * H.getEntry(1, q) + H.getEntry(1, p) * H.getEntry(2, q), 218 H.getEntry(2, p) * H.getEntry(2, q) 219 }; 220 return vpq; 221 } 222 223}