001/******************************************************************************* 002 * Permission to use and distribute this software is granted under the BSD 2-Clause 003 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 004 * Copyright (c) 2016-2023 Wilhelm Burger. All rights reserved. 005 * Visit https://imagingbook.com for additional details. 006 ******************************************************************************/ 007package imagingbook.calibration.zhang; 008 009import imagingbook.calibration.zhang.util.MathUtil; 010import imagingbook.common.geometry.basic.Pnt2d; 011import imagingbook.common.util.ParameterBundle; 012import org.apache.commons.math3.linear.RealMatrix; 013 014import java.util.ArrayList; 015import java.util.List; 016 017 018/** 019 * This is an implementation of the camera calibration method 020 * described in 021 * Z. Zhang, "A flexible new technique for camera calibration", 022 * IEEE Transactions on Pattern Analysis and Machine Intelligence, 023 * 22(11), pp. 1330-1334, 2000. 024 * See also 025 * <a href="http://research.microsoft.com/en-us/um/people/zhang/Calib/"> 026 * http://research.microsoft.com/en-us/um/people/zhang/Calib/</a> 027 * and 028 * <a href="http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf"> 029 * http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf</a> 030 * 031 * @author W. Burger 032 * @version 2018/12/29 033 */ 034public class Calibrator { 035 036 /** 037 * Inner class representing a set of parameters for instantiating new objects of type of {@link Calibrator}. 038 * Parameters can be specified by setting the associated public fields. 039 */ 040 public static class Parameters implements ParameterBundle<Calibrator> { 041 /** Normalize point coordinates for numerical stability in {@link HomographyEstimator}. */ 042 public boolean normalizePointCoordinates = true; 043 /** Assume that the camera has no skew (currently not used). */ 044 public boolean assumeZeroSkew = false; 045 /** Use numeric (instead of analytic) calculation of the Jacobian in {@link NonlinearOptimizer}. */ 046 public boolean useNumericJacobian = false; 047 /** Number of lens distortion coefficients (2 = simple polynomial model). */ 048 public int lensDistortionKoeffients = 2; 049 /** Turn on debugging output. */ 050 public boolean debug = false; 051 } 052 053 private int M; // the number of camera views 054 private final Pnt2d[] modelPts; // the sequence of 2D points in the planar model 055 private final List<Pnt2d[]> imgPntSet; // list of vectors containing observed 2D image points for each view 056 057 private Pnt2d[][] obsPts = null; 058 private final Parameters params; 059 private Camera initCam, finalCam; 060 private ViewTransform[] initViews, finalViews; 061 062 // ------- constructors ------------------------------ 063 064 /** 065 * The only constructor. 066 * 067 * @param params a parameter object (default parameters are used if {@code null} is passed) 068 * @param model a sequence of 2D points specifying the x/y coordinates of the planar calibration pattern (assuming 069 * zero z-coordinates) 070 */ 071 public Calibrator(Parameters params, Pnt2d[] model) { 072 this.params = (params != null) ? params : new Parameters(); 073 this.modelPts = model; 074 this.imgPntSet = new ArrayList<>(); 075 } 076 077 /** 078 * Adds a new observation (a sequence of 2D image points) of the planar calibration pattern. 079 * 080 * @param pts a sequence of 2D image points 081 */ 082 public void addView(Pnt2d[] pts) { 083 imgPntSet.add(pts); 084 } 085 086 /** 087 * Performs the actual camera calibration based on the provided sequence of views. 088 * 089 * @return the estimated camera intrinsics as a {@link Camera} object 090 */ 091 public Camera calibrate() { 092 M = imgPntSet.size(); // number of views to process 093 if (M < 2) { 094 throw new IllegalStateException("Calibration: at least two views needed"); 095 } 096 097 obsPts = imgPntSet.toArray(new Pnt2d[0][]); 098 099 // Step 1: Calculate the homographies for each of the given N views: 100 HomographyEstimator hest = new HomographyEstimator(params.normalizePointCoordinates, true); 101 RealMatrix[] H_init = hest.estimateHomographies(modelPts, obsPts); 102 103 // Step 2: Estimate the intrinsic parameters by linear optimization: 104 CameraIntrinsicsEstimator cis = new CameraIntrinsicsEstimator(); 105 106 RealMatrix A_init = cis.getCameraIntrinsics(H_init); 107 initCam = new Camera(A_init, new double[params.lensDistortionKoeffients]); 108 109 // Step 3: calculate the extrinsic view parameters: 110 ExtrinsicViewEstimator eve = new ExtrinsicViewEstimator(A_init); 111 initViews = eve.getExtrinsics(H_init); 112 113 // Step 4: Determine the lens distortion from initial estimates: 114 RadialDistortionEstimator rde = new RadialDistortionEstimator(); 115 double[] distParams = rde.estimateLensDistortion(initCam, initViews, modelPts, obsPts); 116 Camera improvedCam = new Camera(A_init, distParams); 117 118 // Step 5: Refine all parameters by non-linear optimization 119 NonlinearOptimizer optimizer = (params.useNumericJacobian) ? 120 new NonlinearOptimizerNumeric(modelPts, obsPts) : 121 new NonlinearOptimizerAnalytic(modelPts, obsPts); 122 optimizer.optimize(improvedCam, initViews); 123 finalCam = optimizer.getFinalCamera(); 124 finalViews = optimizer.getFinalViews(); 125 return finalCam; 126 } 127 128 129 //--------------------------------------------------------------------------- 130 131 // @SuppressWarnings("unused") 132 // private void printHomographies(RealMatrix[] homographies) { 133 // int i = 0; 134 // for (RealMatrix H : homographies) { 135 // i++; 136 // System.out.println("Homography " + i + ":"); 137 // System.out.println(Matrix.toString(H.getData())); 138 // } 139 // } 140 141 /** 142 * Calculates the squared projection error for a single view, associated with a set of observed image points. 143 * 144 * @param cam a camera model (camera intrinsics) 145 * @param view a view transformation (camera extrinsics) 146 * @param observed a set of observed image points 147 * @return the squared projection error (measured in pixel units) 148 */ 149 public double getProjectionError(Camera cam, ViewTransform view, Pnt2d[] observed) { 150 double sqError = 0; 151 for (int j = 0; j < modelPts.length; j++) { 152 double[] uv = cam.project(view, modelPts[j]); 153 double[] UV = MathUtil.toArray(observed[j]); 154 double du = uv[0] - UV[0]; 155 double dv = uv[1] - UV[1]; 156 sqError = sqError + du * du + dv * dv; 157 } 158 return sqError; 159 } 160 161 /** 162 * Calculates the squared projection error for a sequence of views, associated with a sequence of observed image 163 * point sets. 164 * 165 * @param cam a camera model (camera intrinsics) 166 * @param views a sequence of view transformations (camera extrinsics) 167 * @param observed a sequence of sets of observed image points 168 * @return the squared projection error (measured in pixel units) 169 */ 170 public double getProjectionError(Camera cam, ViewTransform[] views, Pnt2d[][] observed) { 171 double totalError = 0; 172 for (int i = 0; i < views.length; i++) { 173 totalError = totalError + getProjectionError(cam, views[i], observed[i]); 174 } 175 return totalError; 176 } 177 178 // ---------------------------------------------------------------------- 179 180 /** 181 * Returns the initial camera model (no lens distortion). 182 * 183 * @return the initial camera model 184 */ 185 public Camera getInitialCamera() { 186 return initCam; 187 } 188 189 /** 190 * Returns the final camera model (including lens distortion). 191 * 192 * @return the final camera model 193 */ 194 public Camera getFinalCamera() { 195 return finalCam; 196 } 197 198 /** 199 * Returns the sequence of initial camera views (extrinsics, no lens distortion). 200 * 201 * @return the sequence of initial camera views 202 */ 203 public ViewTransform[] getInitialViews() { 204 return initViews; 205 } 206 207 /** 208 * Returns the sequence of final camera views (extrinsics, including lens distortion). 209 * 210 * @return the sequence of final camera views 211 */ 212 public ViewTransform[] getFinalViews() { 213 return finalViews; 214 } 215 216}